scholarly journals Evaluation de deux méthodes de correction de biais des sorties de modèles climatiques régionaux Cordex-Africa pour la prévision des pluies  : cas du bassin côtier oranais

Author(s):  
Sabrina Taïbi ◽  
Ayoub Zeroual ◽  
Naziha Melhani

Abstract. Ce travail vise à évaluer les pluies simulées issues des sorties de modèles climatiques régionaux Cordex-Africa dans le bassin côtier oranais en Algérie. Pour cela les simulations du modèle RCA4 (Rossby Centre Atmosphere model, version 4) forcé par deux modèles de circulation globale (MPI-ESM-LR et CNRM-CM5) sous deux scenarios de forçages radiatifs «Representative Concentration Pathways» (RCPs) RCP 4.5 et RCP 8.5 sont comparées aux pluies observées au niveau de cinq stations pluviométriques, au cours de la période de contrôle 1981–2005 à l'échelle mensuelle. Les données futures simulées sont ensuite corrigées à l'aide de deux méthodes de correction de biais, à savoir, la méthode quantile-quantile et la méthode Delta, afin de mieux analyser leur évolution au cours de la période de projection 2075–2099. Les coefficients d'échange estimés au cours de la période 2075–2099 montrent que les simulations corrigées par la méthode Delta sont moins biaisées que les simulations corrigées par la méthode quantile-quantile. L'analyse de l'évolution future des pluies met en évidence une réduction de −12 % à −38 % d'ici la fin du 21ème siècle selon le RCP 4.5. Cette réduction qui est encore plus importante selon le scénario pessimiste RCP 8.5, risque d'affecter la disponibilité des ressources en eau dans la région qui a connu par le passé une période de sècheresse sévère et persistante. Enfin, cette étude peut être utilisée comme outil d'aide à la décision destiné aux parties prenantes de la gestion intégrée des ressources en eau et de l'agriculture. Néanmoins, pour une meilleure appréciation des impacts socio-économiques, une étude plus approfondie en considérant plusieurs modèles climatiques et d'autres paramètres climatiques, est recommandée.

2016 ◽  
Vol 121 (8) ◽  
pp. 4162-4176 ◽  
Author(s):  
Jennifer E. Kay ◽  
Line Bourdages ◽  
Nathaniel B. Miller ◽  
Ariel Morrison ◽  
Vineel Yettella ◽  
...  

2011 ◽  
Vol 24 (5) ◽  
pp. 1362-1377 ◽  
Author(s):  
Benjamin M. Sanderson

Abstract One tool for studying uncertainties in simulations of future climate is to consider ensembles of general circulation models where parameterizations have been sampled within their physical range of plausibility. This study is about simulations from two such ensembles: a subset of the climateprediction.net ensemble using the Met Office Hadley Centre Atmosphere Model, version 3.0 and the new “CAMcube” ensemble using the Community Atmosphere Model, version 3.5. The study determines that the distribution of climate sensitivity in the two ensembles is very different: the climateprediction.net ensemble subset range is 1.7–9.9 K, while the CAMcube ensemble range is 2.2–3.2 K. On a regional level, however, both ensembles show a similarly diverse range in their mean climatology. Model radiative flux changes suggest that the major difference between the ranges of climate sensitivity in the two ensembles lies in their clear-sky longwave responses. Large clear-sky feedbacks present only in the climateprediction.net ensemble are found to be proportional to significant biases in upper-tropospheric water vapor concentrations, which are not observed in the CAMcube ensemble. Both ensembles have a similar range of shortwave cloud feedback, making it unlikely that they are causing the larger climate sensitivities in climateprediction.net. In both cases, increased negative shortwave cloud feedbacks at high latitudes are generally compensated by increased positive feedbacks at lower latitudes.


2017 ◽  
Vol 17 (7) ◽  
pp. 4731-4749 ◽  
Author(s):  
Chenglai Wu ◽  
Xiaohong Liu ◽  
Minghui Diao ◽  
Kai Zhang ◽  
Andrew Gettelman ◽  
...  

Abstract. In this study we evaluate cloud properties simulated by the Community Atmosphere Model version 5 (CAM5) using in situ measurements from the HIAPER Pole-to-Pole Observations (HIPPO) campaign for the period of 2009 to 2011. The modeled wind and temperature are nudged towards reanalysis. Model results collocated with HIPPO flight tracks are directly compared with the observations, and model sensitivities to the representations of ice nucleation and growth are also examined. Generally, CAM5 is able to capture specific cloud systems in terms of vertical configuration and horizontal extension. In total, the model reproduces 79.8 % of observed cloud occurrences inside model grid boxes and even higher (94.3 %) for ice clouds (T ≤ −40 °C). The missing cloud occurrences in the model are primarily ascribed to the fact that the model cannot account for the high spatial variability of observed relative humidity (RH). Furthermore, model RH biases are mostly attributed to the discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds, the model captures the observed increase of ice crystal mean sizes with temperature, albeit with smaller sizes than the observations. The model underestimates the observed ice number concentration (Ni) and ice water content (IWC) for ice crystals larger than 75 µm in diameter. Modeled IWC and Ni are more sensitive to the threshold diameter for autoconversion of cloud ice to snow (Dcs), while simulated ice crystal mean size is more sensitive to ice nucleation parameterizations than to Dcs. Our results highlight the need for further improvements to the sub-grid RH variability and ice nucleation and growth in the model.


2007 ◽  
Vol 8 (3) ◽  
pp. 513-533 ◽  
Author(s):  
Yeonjoo Kim ◽  
Guiling Wang

Abstract To investigate the impact of anomalous soil moisture conditions on subsequent precipitation over North America, a series of numerical experiments is performed using a modified version of the Community Atmosphere Model version 3 and the Community Land Model version 3 (CAM3–CLM3). First, the mechanisms underlying the impact of spring and summer soil moisture on subsequent precipitation are examined based on simulations starting on 1 April and 1 June, respectively. How the response of precipitation to initial soil moisture anomalies depends on the characteristics of such anomalies, including the timing, magnitude, spatial coverage, and vertical depth, is then investigated. There are five main findings. First, the impact of spring soil moisture anomalies is not evident until early summer although their impact on the large-scale circulation results in slight changes in precipitation during spring. Second, precipitation increases with initial soil moisture almost linearly within a certain range of soil moisture. Beyond this range, precipitation is less responsive. Third, during the first month following the onset of summer soil moisture anomalies, the precipitation response to wet anomalies is larger in magnitude than that to dry anomalies. However, the resulting wet anomalies in precipitation quickly dissipate within a month or so, while the resulting dry anomalies in precipitation remain at a considerable magnitude for a longer period. Consistently, wet spring anomalies are likely to be ameliorated before summer, and thus have a smaller impact (in magnitude) on summer precipitation than dry spring anomalies. Fourth, soil moisture anomalies of smaller spatial coverage lead to precipitation anomalies that are smaller and less persistent, compared to anomalies at the continental scale. Finally, anomalies in shallow soil can persist long enough to influence the subsequent precipitation at the seasonal time scale. Dry anomalies in deep soils last much longer than those in shallow soils.


2014 ◽  
Vol 14 (12) ◽  
pp. 17749-17816 ◽  
Author(s):  
R. A. Scanza ◽  
N. Mahowald ◽  
S. Ghan ◽  
C. S. Zender ◽  
J. F. Kok ◽  
...  

Abstract. The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral components in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m−2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 W m−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.


2019 ◽  
Vol 32 (10) ◽  
pp. 2917-2949 ◽  
Author(s):  
Sungsu Park ◽  
Jihoon Shin ◽  
Siyun Kim ◽  
Eunsil Oh ◽  
Yoonjae Kim

Abstract As a contribution to phase 6 of the Coupled Model Intercomparison Project (CMIP6), the global climate simulated by an atmospheric general circulation model (GCM), the Seoul National University Atmosphere Model version 0 with a Unified Convection Scheme (SAM0-UNICON), is compared with observation and climates simulated by the Community Atmosphere Model version 5 (CAM5) and Community Earth System Model version 1 (CESM1), on which SAM0-UNICON is based. Both SAM0-UNICON and CESM1 successfully reproduce observed global warming after 1970. The global mean climate simulated by SAM0-UNICON is roughly similar to that of CAM5/CESM1. However, SAM0-UNICON improves the simulations of the double intertropical convergence zone, shortwave cloud forcing, near-surface air temperature, aerosol optical depth, sea ice fraction, and sea surface temperature (SST), but is slightly poorer for the simulation of tropical relative humidity, Pacific surface wind stress, and ocean rainfall. Two important biases in the simulated mean climate in both models are a set of horseshoe-shaped biases of SST, sea level pressure, precipitation, and cloud radiative forcings in the central equatorial Pacific and a higher sea ice fraction in the Arctic periphery and Southern Hemispheric circumpolar regions. Both SAM0-UNICON and CESM1 simulate the observed El Niño–Southern Oscillation (ENSO) reasonably well. However, compared with CAM5/CESM1, SAM0-UNICON performs better in simulating the Madden–Julian oscillation (MJO), diurnal cycle of precipitation, and tropical cyclones. The aerosol indirect effect (AIE) simulated by SAM0-UNICON is similar to that from CAM5 but the magnitudes of the individual shortwave and longwave AIEs are substantially reduced.


Sign in / Sign up

Export Citation Format

Share Document