Use of close-range photogrammetry to characterize fracture surfaces

2004 ◽  
Vol 175 (5) ◽  
pp. 481-490 ◽  
Author(s):  
Frédéric Filipe ◽  
Judith Sausse

Abstract Natural fractures are characterized by rough surfaces and complex fluid flows. A large distribution of apertures (residual voids) within their walls and the presence of contact points produce heterogeneous flows (channelling). The resulting permeabilities, porosities or fluid-rock exchange surfaces cannot be realistically modelled by parallel and smooth plate models. It is therefore very important to better constrain models of the fracture planes : asperity heights and aperture distribution to be able to fix specific models of permeability in specific fracture void geometry. In this approach, a precise description of the fracture surface planes is given by providing some new quantitative data of surface roughness in the case of natural fractures. Studied fractures are sampled in a granite and a sandstone in the deep basement of the Hot Dry Rock site of Soultzsous-Forêts (Bas-Rhin, France). An original use of close-range photogrammetry is performed to quantify XYZ data on fracture walls. This methodology is presented as a non destructive, precise and accurate technology to quantify some digital terrain models (DTM) of the fracture plane topography. XYZ results are statistically treated in terms of surface roughness and tortuosity and are compared for different rocks to previous data obtained by mechanical profilometry. The results shows that the photogrammetric approach gives same order of asperity heights magnitudes as profilometry despite a shift towards more important values of roughness when close range photogrammetry uses relative autocorrelation models. The advantage of photogrammetry is that this technique gives very quick results and is non destructive when thin alteration or pulverulent deposits are present within fracture walls or in the rock matrix. The disadvantage is that a slight smoothing of data is inherent to an absolute model calibration. Finally only relative 300*300 DTM are finally chosen to match profilometry data because of their higher precision in terms of micro roughness description to compare natural fracture surfaces. In the objective of a classification of fracture roughness in specific geological contexts, the photogrammetric approach gives a good estimation of different classes of roughness in function of rock alteration and type.


2017 ◽  
Vol 31 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Christopher Gomez ◽  
Kyoko Kataoka ◽  
Aditya Saputra ◽  
Patrick Wassmer ◽  
Atsushi Urabe ◽  
...  

Numerous progress has been made in the field of applied photogrammetry in the last decade, including the usage of close-range photogrammetry as a mean of conservation and record of outcrops. In the present contribution, we use the SfM-MVS method combined with a wavelet decomposition analysis of the surface, in order to relate it to morphological and surface roughness data. The results demonstrated that wavelet decomposition and RMS could provide a rapid insight on the location of coarser materials and individual outliers, while arithmetic surface roughness were more useful to detect units or layers that are similar on the outcrop. The method also emphasizes the fact that the automation of the process does not allows clear distinction between any artefact crack or surface change and that human supervision is still essential despite the original goal of automating the outcrop surface analysis.



2016 ◽  
Vol 56 (1) ◽  
pp. 225 ◽  
Author(s):  
Kunakorn Pokalai ◽  
David Kulikowski ◽  
Raymond L. Johnson ◽  
Manouchehr Haghighi ◽  
Dennis Cooke

Hydraulic fracturing in tight gas reservoirs has been performed in the Cooper Basin for decades in reservoirs containing high stress and pre-existing natural fractures, especially near faults. The hydraulic fracture is affected by factors such as tortuosity, high entry pressures, and the rock fabric including natural fractures. These factors cause fracture plane rotation and complexities, leading to fracture disconnection or reduced proppant placement during the treatment. In this paper, rock properties are estimated for a targeted formation using well logs to create a geomechanical model. Natural fracture and stress azimuths within the interval were interpreted from borehole image logs. The image log interpretations inferred that fissures are oriented 30–60° relative to the maximum horizontal stress. Next, diagnostic fracture injection test (DFIT) data was used with the poro-elastic stress equations to predict tectonic strains. Finally, the geomechanical model was history-matched with a planar 3D hydraulic fracturing simulator, and gave more insight into fracture propagation in an environment of pre-existing natural fractures. The natural fracture azimuths and calibrated geomechanical model are input into a framework to evaluate varying scenarios that might result based on a vertical or inclined well design. A well design is proposed based on the natural fracture orientation relative to the hydraulic fracture that minimises complexity to optimise proppant placement. In addition, further models and diagnostics are proposed to aid predicting the hydraulically induced fracture geometry, its impact on gas production, and optimising wellbore trajectory to positively interact with pre-existing natural fractures.





Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2530 ◽  
Author(s):  
Sascha Frank ◽  
Thomas Heinze ◽  
Stefan Wohnlich

In single fractures, dispersion is often linked to the roughness of the fracture surfaces and the resulting local aperture distribution. To experimentally investigate the effects of diverse fracture types and surface morphologies in sandstones, three fractures were considered: those generated by sawing and splitting, and a natural sedimentary fracture. The fracture surface morphologies were digitally analyzed and the hydraulic and transport parameters of the fractures were determined from Darcy and the tracer tests using a fit of a continuous time random walk (CTRW) and a classical advection–dispersion equation (ADE). While the sawed specimen with the smoothest surface had the smallest dispersivity, the natural fracture has the largest dispersivity due to strong anisotropy and non-matching fracture surfaces, although its surface roughness is comparable to the split specimen. The parameterization of the CTRW and of the ADE agree well for β > 4 of the truncated power law. For smaller values of β, non-Fickian transport processes are dominant. Channeling effects are observable in the tracer breakthrough curves. The transport behavior in the fractures is controlled by multiple constraints such as several surface roughness parameters and the equivalent hydraulic aperture.



2021 ◽  
Author(s):  
Giuseppe Casula ◽  
Silvana Fais ◽  
Francesco Cuccuru ◽  
Maria Giovanna Bianchi ◽  
Paola Ligas ◽  
...  

<p>The diagnosis of the conservation state of monumental structures from constraints to the spatial distribution of their physical properties on shallow and inner materials represents one of the key objectives in the application of non-invasive techniques. <em>In situ</em>, CRP and 3D ultrasonic tomography can provide an effective coverage of stone materials in space and time. The intrinsic characteristics of the materials that make up a monumental structure and affect the two properties (i.e., reflectivity, longitudinal velocity) through the above methods substantially differ. Consequently, the content of their information is mainly complementary rather than redundant.</p><p>In this study we present the integrated application of different non-destructive techniques i.e., Close Range Photogrammetry (CRP), and low frequency (24 KHz) ultrasonic tomography complemented by petrographycal analysis based essentially on Optical Microscopy (OM). This integrated methodology has been applied to a Carrara marble column of the <em>Basilica of San Saturnino</em>, in Byzantine-Proto-Romanesque style, which is part of the Paleo Christian complex of the V-VI century. This complex also includes the adjacent Christian necropolis in the square of <em>San Cosimo</em> in the city of Cagliari, Sardinia, Italy. The column under study is made of bare material dating back probably to the first century A.D., it was subjected to various traumas due to disassembly and transport to the site, including damage caused by the close blast of a WWII fragmentation bomb.</p><p>High resolution 3D modelling of the studied artifact was computed starting from the integration of proximal sensing techniques such as CRP based on Structure from Motion (SfM), with which information about the geometrical anomalies and reflectivity of the investigated marble column surface was obtained. On the other hand, the inner parts of the studied body were successfully inspected in a non-invasive way by computing the velocity pattern of the ultrasonic signal through the investigated materials using 3D ultrasonic tomography. This technique gives information on the elastic properties of the material related with mechanical properties and a number of factors, such as presence of fractures, voids, and flaws. Extracting information on such factors from the elastic wave velocity using 3D tomography provides a non-invasive approach to analyse the property changes of the inner material of the ancient column. The integrated application of <em>in situ</em> CRP and ultrasonic techniques provides a full 3D high resolution model of the investigated artifact. This model enhanced by the knowledge of the petrographic characteristics of the materials, improves the diagnostic process and affords reliable information on the state of conservation of the materials used in the construction processes of the studied monumental structure. The integrated use of the non-destructive techniques described above also provides suitable data for a possible restoration and future preservation.</p><p><strong> </strong></p><p><strong>Acknowledgments: </strong>This work was partially supported by FIR (Fondi integrativi per la Ricerca) funded by the University of Cagliari (Italy). The authors would also like to thank the Ministero dei Beni e delle Attività Culturali. Polo Museale della Sardegna and Arch. Alessandro Sitzia for their kind permission to work on the <em>San Saturnino Basilica</em>.</p>





2020 ◽  
Vol 10 (8) ◽  
pp. 3333-3345
Author(s):  
Ali Al-Rubaie ◽  
Hisham Khaled Ben Mahmud

Abstract All reservoirs are fractured to some degree. Depending on the density, dimension, orientation and the cementation of natural fractures and the location where the hydraulic fracturing is done, preexisting natural fractures can impact hydraulic fracture propagation and the associated flow capacity. Understanding the interactions between hydraulic fracture and natural fractures is crucial in estimating fracture complexity, stimulated reservoir volume, drained reservoir volume and completion efficiency. However, because of the presence of natural fractures with diffuse penetration and different orientations, the operation is complicated in naturally fractured gas reservoirs. For this purpose, two numerical methods are proposed for simulating the hydraulic fracture in a naturally fractured gas reservoir. However, what hydraulic fracture looks like in the subsurface, especially in unconventional reservoirs, remain elusive, and many times, field observations contradict our common beliefs. In this study, the hydraulic fracture model is considered in terms of the state of tensions, on the interaction between the hydraulic fracture and the natural fracture (45°), and the effect of length and height of hydraulic fracture developed and how to distribute induced stress around the well. In order to determine the direction in which the hydraulic fracture is formed strikethrough, the finite difference method and the individual element for numerical solution are used and simulated. The results indicate that the optimum hydraulic fracture time was when the hydraulic fracture is able to connect natural fractures with large streams and connected to the well, and there is a fundamental difference between the tensile and shear opening. The analysis indicates that the growing hydraulic fracture, the tensile and shear stresses applied to the natural fracture.



2011 ◽  
Vol 130-134 ◽  
pp. 2404-2408
Author(s):  
Jun Ma ◽  
Wen Ying Su

In view of the heavy workload and possible intervention to the normal traffic flow during the performance testing of road traffic signs, this paper is designed to present a system that can be installed in an automobile and automatically track and analyze the performance of traffic signs. The system consists of a carrying vehicle, GPS, IMU, area-array cameras, frame grabbers, data acquisition software and data analysis software. Based on close-range photogrammetry technology, the system is designed with a set of effective road traffic signs automatic detection algorithms, which can automatically measure and analyze the properties of road traffic signs, such as dimensions, headroom and verticality of the column, etc.



2021 ◽  
Vol 11 (6) ◽  
pp. 2785
Author(s):  
Michael Lösler ◽  
Cornelia Eschelbach ◽  
Thomas Klügel ◽  
Stefan Riepl

A global geodetic reference system (GGRS) is realized by physical points on the Earth’s surface and is referred to as a global geodetic reference frame (GGRF). The GGRF is derived by combining several space geodetic techniques, and the reference points of these techniques are the physical points of such a realization. Due to the weak physical connection between the space geodetic techniques, so-called local ties are introduced to the combination procedure. A local tie is the spatial vector defined between the reference points of two space geodetic techniques. It is derivable by local measurements at multitechnique stations, which operate more than one space geodetic technique. Local ties are a crucial component within the intertechnique combination; therefore, erroneous or outdated vectors affect the global results. In order to reach the ambitious accuracy goal of 1 mm for a global position, the global geodetic observing system (GGOS) aims for strategies to improve local ties, and, thus, the reference point determination procedures. In this contribution, close range photogrammetry is applied for the first time to determine the reference point of a laser telescope used for satellite laser ranging (SLR) at Geodetic Observatory Wettzell (GOW). A measurement campaign using various configurations was performed at the Satellite Observing System Wettzell (SOS-W) to evaluate the achievable accuracy and the measurement effort. The bias of the estimates were studied using an unscented transformation. Biases occur if nonlinear functions are replaced and are solved by linear substitute problems. Moreover, the influence of the chosen stochastic model onto the estimates is studied by means of various dispersion matrices of the observations. It is shown that the resulting standard deviations are two to three times overestimated if stochastic dependencies are neglected.



Sign in / Sign up

Export Citation Format

Share Document