scholarly journals On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)

Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2535-2547
Author(s):  
Andrea Bistacchi ◽  
Silvia Mittempergher ◽  
Mattia Martinelli ◽  
Fabrizio Storti

Abstract. We present an innovative workflow for the statistical analysis of fracture data collected along scanlines, composed of two major stages, each one with alternative options. A prerequisite in our analysis is the assessment of stationarity of the dataset, which is motivated by statistical and geological considerations. Calculating statistics on non-stationary data can be statistically meaningless, and moreover the normalization and/or sub-setting approach that we discuss here can greatly improve our understanding of geological deformation processes. Our methodology is based on performing non-parametric statistical tests, which allow detecting important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows defining the boundaries of stationary domains in an objective way. Once stationarity has been analysed, other statistical methods already known in the literature can be applied. Here we discuss in detail methods aimed at understanding the degree of saturation of fracture systems based on the type of spacing distribution, and we evidence their limits in cases in which they are not supported by a proper spatial statistical analysis.

2020 ◽  
Author(s):  
Andrea Bistacchi ◽  
Silvia Mittempergher ◽  
Mattia Martinelli ◽  
Fabrizio Storti

Abstract. We present an innovative workflow for the statistical analysis of fracture data collected along scanlines, composed of two major stages, each one with alternative options. A prerequisite in our analysis is the assessment of stationarity of the dataset, that is motivated by statistical and geological motivations. Calculating statistics on non-stationary data can be statistically meaningless, and moreover the normalization and/or sub-setting approach that we discuss here can greatly improve our understanding of geological deformation processes. Our methodology is based on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), that allows defining the boundaries of stationary domains in an objective way. Once stationarity has been analysed, other statistical methods already known in literature can be applied. Here we discuss in details methods aimed at understanding the degree of saturation of fracture systems based on the type of spacing distribution, and we evidence their limits in cases where they are not supported by a proper spatial statistics analysis.


2009 ◽  
pp. 59-78
Author(s):  
Francesco Giovanni Truglia

- This contribution is aimed at builgin a sort of social geography of multicultural cohabitation in the municipality of Rome and identifying ethnic locations based a series of statistical indicators - some of which unpublished - with the use of certain instruments of spatial statistical analysis. The study is articulated on two levels. The first examines the urban areas and offers a horizontal overview of foreigners' spatial distribution. The second takes into consideration units of analysis referred to different administrative divisions (City, Municipality, urban area). This is a vertical analysis that takes into account the specific aspects of a certain urban area compared to the city and municipality of reference.


2005 ◽  
Vol 40 (2) ◽  
pp. 107-114 ◽  
Author(s):  
João Batista Duarte ◽  
Roland Vencovsky

The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.


2021 ◽  
Vol 9 (4) ◽  
pp. 378
Author(s):  
Jong Kwan Kim

As high vessel traffic in fairways is likely to cause frequent marine accidents, understanding vessel traffic flow characteristics is necessary to prevent marine accidents in fairways. Therefore, this study conducted semi-continuous spatial statistical analysis tests (the normal distribution test, kurtosis test and skewness test) to understand vessel traffic flow characteristics. First, a vessel traffic survey was conducted in a designated area (Busan North Port) for seven days. The data were collected using an automatic identification system and subsequently converted using semi-continuous processing methods. Thereafter, the converted data were used to conduct three methods of spatial statistical analysis. The analysis results revealed the vessel traffic distribution and its characteristics, such as the degree of use and lateral positioning on the fairway based on the size of the vessel. In addition, the generalization of the results of this study along with that of further studies will aid in deriving the traffic characteristics of vessels on the fairway. Moreover, these characteristics will reduce maritime accidents on the fairway, in addition to establishing the foundation for research on autonomous ships.


Author(s):  
Larisa V. Golovatyuk ◽  
◽  
Roman A. Mikhailov ◽  
◽  

Current climate changes require special attention to the implementation of environmental activities in arid regions. The study of the biotic component of water bodies of such ecosystems and the patterns of their spatial distribution is an important area of scientific research. The river network of the semi-desert zone of the Russian Plain is one of the least studied lotic systems in the Lower Volga basin. In this river network, the plain Yeruslan River is of the greatest importance because it largely determines the environmental characteristics of this arid territory. Therefore, it is important to study the structural indicators and spatial dynamics of macrozoobenthos communities in the Yeruslan River. The aim of the work was to study species composition, the structural and quantitative indicators of macrozoobenthos from the source to the mouth of the Yeruslan River and to determine the conceptual belonging of the bottom communities of the plain river of the semidesert zone to a certain type of distribution. The Yeruslan River (51°18'3''N, 47°46'19''E) flows through the semi-desert zone of the Russian Plain (Volgograd region, Russia) and it is a tributary of Volgograd reservoir. The length of the Yeruslan River is 282 km, with a catchment area of 55700 km2. We collected samples of macrozoobenthos at 9 stations of the Yeruslan River (See Fig. 1) in June 2015 and July 2016. In the ripal zone, the integrated samples for quantitative macrozoobenthos analysis were taken using an Ekman-type grab sampler (surface area 25 cm2) in replicates (8X) and a handle blade trawl (0.2 м × 0.5 м). In the medial zone, samples were taken by an Ekman-type grab sampler (surface area 250 cm2) in replicates (2X). Samples were washed in the field using a mesh screen with 300-310-μm mesh size and preserved in 4% formaldehyde. At each station of the Yeruslan River, we used field analytical instruments for measuring pH and oxygen content. Water samples were taken for hydrochemical analysis at different sections of the river (See Table 1). We used the model of isolation by distance (Malécot, 1948), Monmonier’s maximum difference algorithm (Manni et al., 2004) and the Dickey-Fuller test (Dickey and Fuller, 1979) to perform statistical analysis of changes in the species structure of macrozoobenthos. The Yeruslan River flows within the geochemical province of continental salinity, which is characterized by an evaporative type of natural water regime, leading to progressive accumulation of salts. In this research, we found out that water was brackish at several stations of the river (1250-1420 mgl-1) due to water drainage of saline soils. We revealed that the Yeruslan River is polluted with nitrite nitrogen (at station 1) and phosphorus compounds (at stations 4 and 8) but concentrations of ammonium nitrogen, nitrate nitrogen, cadmium, copper, zinc and lead did not exceed the MPC. Comparative analysis has shown that from the source to the mouth of the river there are no significant changes in the speed of water velocity flow, and the physical and chemical conditions are specific for each station. In the river, we collected 132 species: 47 - Diptera, 20 - Oligochaeta, 11 - Mollusca, 11 - Grustacea, 11 - Coleoptera, 7 - Trichoptera, 7 - Heteroptera, 6 - Hirudinea, 4 - Odonata, 4 - Ephemeroptera, 1 - Lepidoptera, Hydracarina, Polychaeta and Megaloptera. The macrozoobenthos of the river is represented by limnophilic species in the upper, middle and lower reaches. This is due to the small slope of the Yeruslan River and the presence of permanent and temporary dams. In the mouth reaches, the macrozoobenthos communities included species of the Ponto-Caspian and Ponto-Azov zoogeographic complexes. At all stations of the river, Oligochaeta and Chironomidae were of high density. Also, in the river mouth, Mollusca were of high density (See Fig. 2). Statistical analysis of sequences of hydrobiological characteristics along the longitudinal gradient of the Yeruslan River using the Dickey- Fuller test showed that the presence of a stationary distribution trend with random “wandering” is typical of the series of total density and biomass of macrozoobenthos, the number of worms of the family Tubificidae, larvae of chironomids of the subfamily Tanytarsini and mayflies of the family Baetidae. For the other series of observations, the presence of a nonlinear trend is noted (See Table 3 and Fig. 3). The selection of a sequence of borders (barrier) between river communities within the ecosystem by Montmonier’s method using a matrix of species distances by the Bray-Curtis method made it possible to identify the source (station 1) with a high level of nitritic nitrogen in the water as one of the specific areas. The second most important border separates station 3 with a low content of dissolved oxygen, and the third one allocates the mouth reaches (station 9) as an independent area, where there is a cohabitation of river and reservoir species (See Fig. 4). Based on the analysis of fauna and using statistical methods, we found out that macrozoobenthos communities do not change from the source to the mouth of the river in accordance with the “the river continuum concept”. The habitat of taxa depends on local abiotic and biotic factors at each river station, therefore, we can assume that the distribution of macrozoobenthos communities, generally, corresponds to “the patch dynamics concept”. At the same time, stations 1, 3 and 9 form fairly isolated hydrogeomorphological areas, which is postulated by the concept of “the functional process zones”. It seems that the spatial distribution of macrozoobenthos communities in the Yeruslan River can be explained by a complex combination of two concepts: “the patch dynamics concept” and “the functional process zones”. This type of distribution seems to be typical of plain rivers with very low water velocity and the presence of dams.


Sign in / Sign up

Export Citation Format

Share Document