scholarly journals Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (∼33.5° S), using active seismic and electric methods

2014 ◽  
Vol 6 (1) ◽  
pp. 339-375 ◽  
Author(s):  
D. Díaz ◽  
A. Maksymowicz ◽  
G. Vargas ◽  
E. Vera ◽  
E. Contreras-Reyes ◽  
...  

Abstract. The crustal-scale west-vergent San Ramón thrust fault system at the foot of the main Andean Cordillera in central Chile is a geologically active structure with Quaternary manifestations of complex surface rupture along fault segments in the eastern border of Santiago city. From the comparison of geophysical and geological observations, we assessed the subsurface structure pattern affecting sedimentary cover and rock-substratum topography across fault scarps, which is critic for evaluating structural modeling and associated seismic hazard along this kind of faults. We performed seismic profiles with an average length of 250 m, using an array of twenty-four geophones (GEODE), and 25 shots per profile, supporting high-resolution seismic tomography for interpreting impedance changes associated to deformed sedimentary cover. The recorded traveltime refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both velocities and reflections interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps supported subsurface resistivity tomographic profiles, which revealed systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, clearly limited by well-defined east-dipping resistivity boundaries. The latter can be interpreted in terms of structurally driven fluid content-change between the hanging wall and the footwall of a permeability boundary associated with the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ∼55° E at subsurface levels in piedmont sediments, with local complexities being probably associated to fault surface rupture propagation, fault-splay and fault segment transfer zones.

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 837-849 ◽  
Author(s):  
D. Díaz ◽  
A. Maksymowicz ◽  
G. Vargas ◽  
E. Vera ◽  
E. Contreras-Reyes ◽  
...  

Abstract. The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault surface rupture propagation, fault splays and fault segment transfer zones.


2018 ◽  
Vol 69 (5) ◽  
pp. 467-482 ◽  
Author(s):  
Tamás Csibri ◽  
Samuel Rybár ◽  
Katarína Šarinová ◽  
Michal Jamrich ◽  
Ľubomír Sliva ◽  
...  

Abstract The Blatné Depression located in the NW part of the Danube Basin represents the northernmost sub-basins of the Pannonian Basin System. Its subsidence is associated with oblique collision of the Central Western Carpathians with the European platform, followed by the back-arc basin rifting stage in the Pannonian domain. The conglomerates recognized in the Cífer-2 well document the latest Burdigalian–early Langhian deposition in fan delta lobes situated above the footwall and hanging wall of a WSW–ENE trending fault system, the activity of which preceded the opening of the late Langhian–Serravallian accommodation space with a NE–SW direction. The provenance area of the “Cífer conglomerate” was linked to the Tatric Super-unit complexes. Similar rocks crop out in the southern part of the Malé Karpaty Mts. and are also present in the pre-Cenozoic basement of the Danube Basin. Documented extensive erosion of the crystalline basement and its sedimentary cover lasted until the early/middle Miocene boundary. The “Cífer conglomerate” has distinct clast composition. The basal part consists of poorly sorted conglomerate with sub-angular clasts of metamorphic rocks. Toward the overlying strata, the clasts consist of poorly sorted conglomerates with sub-rounded to well-rounded carbonates and granitoids. The uppermost part consists of poorly sorted conglomerates with sub-rounded to rounded clasts of carbonate, granitoid and metamorphic rock. Within the studied samples a transition from clast to matrix supported conglomerates was observed.


2018 ◽  
Vol 40 (1) ◽  
pp. 463
Author(s):  
E. Skourtsos ◽  
E. Lekkas

On the 8th of October 2005 an earthquake of magnitude 7.6 occurred in northern Pakistan. The earthquake epicenter was located in Pakistan Kashmir, 90 km north of Islamabad, the capital of Pakistan. The focal depth was 26 km triggered by a thrust fault striking NW-SE and of 40o dip angle towards the NE. The mean fault slip was estimated as 4 m. The aftershocks epicenters were located northeastwards of the Indus - Kohistan Seismic Zone. The structures that trace the activated fault were distributed along the southwestern limb of the Muzaffarabad anticline and grouped as structures of flexural-slip folding, structures that are correlated to folding and normal faults. The latter may represent overturned segments of the seismic fault on the high-angle limb of the Muzaffarrabad anticline. This anticline is located on the hanging wall of a thrust fault with geometry and kinematics characteristics similar to those of the Indus — Kohistan Seismic Zone. This zone, from the Hazara - Kashmir Syntaxis to the Swat River represents a blind thrust under the metamorphosed rocks of the Lower Himalayas, while in the region of Sub- Himalayas becomes a distinct structure. This thrust fault is linked in depth to the Main Himalaya Thrust through which, the cratonic basement of India is subducting under its sedimentary cover.


1992 ◽  
Vol 13 (1) ◽  
pp. 1-4 ◽  
Author(s):  
B. J. Bluck ◽  
W. Gibbons ◽  
J. K. Ingham

AbstractThe Precambrian and Lower Palaeozoic foundations of the British Isles may be viewed as a series of suspect terranes whose exposed boundaries are prominent fault systems of various kinds, each with an unproven amount of displacement. There are indications that they accreted to their present configuration between late Precambrian and Carboniferous times. From north to south they are as follows.In northwest Scotland the Hebridean terrane (Laurentian craton in the foreland of the Caledonian Orogen) comprises an Archaean and Lower Proterozoic gneissose basement (Lewisian) overlain by an undeformed cover of Upper Proterozoic red beds and Cambrian to early mid Ordovician shallow marine sediments. The terrane is cut by the Outer Isles Thrust, a rejuvenated Proterozoic structure, and is bounded to the southeast by the Moine Thrust zone, within the hanging wall of which lies a Proterozoic metamorphic complex (Moine Supergroup) which constitutes the Northern Highlands terrane. The Moine Thrust zone represents an essentially orthogonal closure of perhaps 100 km which took place during Ordovician-Silurian times (Elliott & Johnson 1980). The Northern Highlands terrane records both Precambrian and late Ordovician to Silurian tectonometamorphic events (Dewey & Pankhurst 1970) and linkage with the Hebridean terrane is provided by slices of reworked Lewisian basement within the Moine Supergroup (Watson 1983).To the southwest of the Great Glen-Walls Boundary Fault system lies the Central Highlands (Grampian) terrane, an area dominated by the late Proterozoic Dalradian Supergroup which is underlain by a gneissic complex (Central Highland Granulites) that has been variously interpreted as either older


Geosphere ◽  
2014 ◽  
Vol 10 (4) ◽  
pp. 797-827 ◽  
Author(s):  
John M. Fletcher ◽  
Orlando J. Teran ◽  
Thomas K. Rockwell ◽  
Michael E. Oskin ◽  
Kenneth W. Hudnut ◽  
...  

2021 ◽  
Vol 58 ◽  
pp. 200
Author(s):  
Dimitrios Galanakis ◽  
Sotiris Sboras ◽  
Garyfalia Konstantopoulou ◽  
Markos Xenakis

On March 3, 2021, a strong (Mw6.3) earthquake occurred near the towns of Tyrnavos and Elassona. One day later (March 4), a second strong (Mw6.0) earthquake occurred just a few kilometres toward the WNW. The aftershock spatial distribution and the focal mechanisms revealed NW-SE-striking normal faulting. The focal mechanisms also revealed a NE-SW oriented extensional stress field, different from the orientation we knew so far (ca. N-S). The magnitude and location of the two strongest shocks, and the spatiotemporal evolution of the sequence, strongly suggest that two adjacent fault segments were ruptured respectively. The sequence was followed by several coseismic ground deformational phenomena, such as landslides/rockfalls, liquefaction and ruptures. The landslides and rockfalls were mostly associated with the ground shaking. The ruptures were observed west of the Titarissios River, near to the Quaternary faults found by bore-hole lignite investigation. In the same direction, a fault scarp separating the alpidic basement from the alluvial deposits of the Titarissios valley implies the occurrence of a well-developed fault system. Some of the ground ruptures were accompanied by extensive liquefaction phenomena. Others cross-cut reinforced concrete irrigation channels without changing their direction. We suggest that this fault system was partially reactivated, as a secondary surface rupture, during the sequence as a steeper splay of a deeper low-to-moderate angle normal fault.


1988 ◽  
Vol 78 (2) ◽  
pp. 956-978
Author(s):  
William B. Bull ◽  
Philip A. Pearthree

Abstract Movements along the Pitaycachi fault since the Miocene juxtaposed different alluvial units and created 2- to 45-m-high fault scarps downslope from a pedimented mountain front prior to 1887. In 1887, a major earthquake formed a 75-km-long, 12- to 4-m-high scarp along the trace of prehistoric surface ruptures. Diverse evidence from many study sites indicates that about 200,000 yr elapsed between the prior (youngest Pleistocene) event and the 1887 surface rupture. Cumulative displacements of Pliocene(?) to mid-Pleistocene alluvial fans and stream terraces decrease with decreasing age. The trace of the prior rupture was largely buried by sheets of late Pleistocene and Holocene piedmont alluvium. Late Pleistocene soils are offset about the same amount as the height of the 1887 scarp. Valleys that are as much as 40 m deep and 0.5 to 0.9 km wide have been eroded since the prior event; they contain multiple late Pleistocene and Holocene stream terraces that were not faulted until 1887. Pre-1887 alluvial fault scarps were degraded to 2° to 9° slopes before the 1887 event, even in resistant materials such as clay-rich soil horizons with unweathered rhyolite cobbles and calcrete. Scarp height-maximum slope regressions and diffusion-equation analyses for reconstructed pre-1887 scarp profiles indicate that the prior event occurred more than 100,000 yr ago. Acceleration of scarp degradation rates during the Holocene, and/or relatively resistant materials exposed in the scarps, would increase the age estimates to 200,000 yr or more. Very long recurrence intervals are the characteristic style of movement on the Pitaycachi fault. At one site, six ages of diverse valley fills were inset into pedimented granodiorite upslope from the fault between the prior and 1887 events. Only 3 m of relief remained before the 1887 rupture increased the scarp height from 3 to 6 m. Some hillslopes have triangular talus facets of carbonatecemented colluvium that resulted from infrequent fault movements and intervening periods of erosion. Smooth hillsides of resistant volcanic rocks between the facets show that virtually all of the prior surface-rupture event scarps had been removed by prolonged slope degradation.


Sign in / Sign up

Export Citation Format

Share Document