scholarly journals Role of discrete water recharge from supraglacial drainage systems in modeling patterns of subglacial conduits in Svalbard glaciers

2019 ◽  
Vol 13 (3) ◽  
pp. 735-752 ◽  
Author(s):  
Léo Decaux ◽  
Mariusz Grabiec ◽  
Dariusz Ignatiuk ◽  
Jacek Jania

Abstract. As the behavior of subglacial water plays a determining role in glacier dynamics, it requires particular attention, especially in the context of climate warming, which is increasing ablation and generating greater amounts of meltwater. On many glaciers, water flowing from the glacier's surface is the main source of supply to the subglacial drainage system. This system is largely influenced by the supraglacial drainage system, which collects meltwater and precipitation and rapidly delivers it to discrete points in the glacier bed via moulins and crevassed areas, called water input areas (WIAs). Models of patterns of subglacial conduits mainly based on the hydrological potential gradient are still regularly performed without taking into account the supraglacial drainage system. We modeled the pattern of subglacial channels in two glaciers located in Svalbard, the land-terminating Werenskioldbreen and the tidewater Hansbreen during the 2015 melt season. We modeled a spatial and a discrete water recharge in order to compare them. First, supraglacial catchments were determined for each WIA on a high-resolution digital elevation model using the standard watershed modeling tool in ArcGIS. Then, interpolated water runoff was calculated for all the main WIAs. Our model also accounts for several water pressure conditions. For our two studied glaciers, during the ablation season 2015, 72.5 % of total runoff was provided by meltwater and 27.5 % by precipitation. Changes in supraglacial drainage on a decadal timescale are observed in contrast to its nearly stable state on an annual timescale. Nevertheless, due to the specific nature of those changes, it seems to have a low impact on the subglacial system. Therefore, our models of subglacial channel are assumed to be valid for a minimum period of two decades and depend on changes in the supraglacial drainage system. Results showed that, for Svalbard tidewater glaciers with large crevassed areas, models of subglacial channels that assume spatial water recharge may be somewhat imprecise but are far from being completely incorrect, especially for the ablation zone. On the other hand, it is important to take discrete water recharge into account in the case of land-terminating Svalbard glaciers with limited crevassed areas. In all cases, considering a discrete water recharge when modeling patterns of theoretical subglacial channels seems to produce more realistic results according to current knowledge.

2018 ◽  
Author(s):  
Léo Decaux ◽  
Mariusz Grabiec ◽  
Dariusz Ignatiuk ◽  
Jacek Jania

Abstract. Being a determinant factor of the glacier’s dynamic, subglacial water behavior needs a special attention.Water flowing from the glacier’s surface is the principal source supplying the subglacial drainage system. Therefore, insight into the state and evolution of the supraglacial drainage system is crucial for recognition of recharge pattern of the englacial and subglacial drainage pathways. Climate warming causes increased ablation generating higher amount of meltwater and thinning of glacier. Decadal timescale evolution of the supraglacial drainage leads to some modifications of the system in opposition to its nearly stable state on an annual timescale. For two studied glaciers Hansbreen and Werenskioldbreen in southern Svalbard surface meltwater is the main runoff component. During the ablation season 2015, 72.5 % of the total amount was provided by meltwater and 27.5 % by precipitations. Supraglacial catchments were determined on the high resolution digital elevation model using standard watershed modelling tool in ArcGIS, for each water-input area (WIA). Spatialized water runoff calculations for all the main WIAs have been done. Having data on the water sources from catchments delimited on glacier’s surface, modelling of a theoretical pattern of subglacial conduits was done considering discrete water recharge via moulins, shear fractures or crevasses. Classical modelling with an assumption of homogeneous water supply was done for comparison. Several water pressure conditions have been taken into account as well. Results show that models of subglacial drainage system with homogeneous water recharge are more realistic for tidewater glaciers with rather broad permeable firn areas and creased frontal zones, while discrete water recharge models are better for land-terminating glaciers with almost continuous impermeable superficial cold ice layer. Subglacial channel models are assumed to be valid for a minimum period of two decades taking into account evolution of supraglacial drainage system and ice thickness changes of Svalbard polythermal glaciers.


2020 ◽  
Vol 14 (9) ◽  
pp. 2949-2976
Author(s):  
Emma L. M. Lewington ◽  
Stephen J. Livingstone ◽  
Chris D. Clark ◽  
Andrew J. Sole ◽  
Robert D. Storrar

Abstract. We identify and map visible traces of subglacial meltwater drainage around the former Keewatin Ice Divide, Canada, from high-resolution Arctic Digital Elevation Model (ArcticDEM) data. We find similarities in the characteristics and spatial locations of landforms traditionally treated separately (i.e. meltwater channels, meltwater tracks and eskers) and propose that creating an integrated map of meltwater routes captures a more holistic picture of the large-scale drainage in this area. We propose the grouping of meltwater channels and meltwater tracks under the term meltwater corridor and suggest that these features in the order of 10s–100s m wide, commonly surrounding eskers and transitioning along flow between different types, represent the interaction between a central conduit (the esker) and surrounding hydraulically connected distributed drainage system (the meltwater corridor). Our proposed model is based on contemporary observations and modelling which suggest that connections between conduits and the surrounding distributed drainage system within the ablation zone occur as a result of overpressurisation of the conduit. The widespread aerial coverage of meltwater corridors (5 %–36 % of the bed) provides constraints on the extent of basal uncoupling induced by basal water pressure fluctuations. Geomorphic work resulting from repeated connection to the surrounding hydraulically connected distributed drainage system suggests that basal sediment can be widely accessed and evacuated by meltwater.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


2005 ◽  
Vol 42 (6) ◽  
pp. 1585-1599 ◽  
Author(s):  
J H Shin ◽  
D M Potts ◽  
L Zdravkovic

Tunnelling in a water bearing soil often produces a long-term interaction between the tunnel lining and the surrounding soil. With respect to lining design, infiltration and external pore-water pressures are often one of the most important factors to be considered. Development of pore-water pressure may accelerate leakage and cause deterioration of the lining. This can be particularly troublesome to structural and functional components of the tunnel and can often lead to structural failure. However, as a result of the complicated hydraulic boundary conditions and the long times often required for pore pressure equilibration, research on this subject is scarce. Consequently, most design approaches deal with the effects of pore-water pressure on the tunnel lining in a qualitative manner. In this paper, the development of pore-water pressure and its potential effects on the tunnel lining are investigated using the finite element method. In particular, the deterioration of a drainage system caused by clogging is considered. It is shown that the development of pore-water pressure on the lining is dependent on the lining permeability and the deterioration of the drainage system, particularly for a tunnel with both a primary and a secondary lining. The magnitude of pore-water pressure on a new Austrian tunnelling method (NATM) tunnel constructed in decomposed granite soil and the effect of tunnel shape are investigated. Design curves for estimating pore-water pressure loads on a secondary lining are proposed.Key words: numerical analysis, tunnel lining, decomposed granite.


2020 ◽  
Author(s):  
Emma L. M. Lewington ◽  
Stephen J. Livingstone ◽  
Chris D. Clark ◽  
Andrew J. Sole ◽  
Robert D. Storrar

Abstract. We identify and map traces of subglacial meltwater drainage around the former Keewatin Ice Divide, Canada from ArcticDEM data. Meltwater tracks, tunnel valleys and esker splays exhibit several key similarities, including width, spacing, their association with eskers and transitions to and from different types, which together suggest they form part of an integrated drainage signature. We collectively term these features 'meltwater corridors' and propose a new model for their formation, based on observations from contemporary ice masses, of pressure fluctuations surrounding a central conduit. We suggest that eskers record the imprint of a central conduit and meltwater corridors the interaction with the surrounding distributed drainage system. The widespread aerial coverage of meltwater corridors (5–36 % of the bed) provides constraints on the extent of basal uncoupling induced by basal water pressure fluctuations and variations in spatial distribution and evolution of the subglacial drainage system, which will modulate the ice dynamic response.


1986 ◽  
Vol 32 (110) ◽  
pp. 101-119 ◽  
Author(s):  
Almut Iken ◽  
Robert A. Bindschadler

AbstractDuring the snow-melt season of 1982, basal water pressure was recorded in 11 bore holes communicating with the subglacial drainage system. In most of these holes the water levels were at approximately the same depth (around 70 m below surface). The large variations of water pressure, such as diurnal variations, were usually similar at different locations and in phase. In two instances of exceptionally high water pressure, however, systematic phase shifts were observed; a wave of high pressure travelled down-glacier with a velocity of approximately 100 m/h.The glacier-surface velocity was measured at four lines of stakes several times daily. The velocity variations correlated with variations in subglacial water pressure. The functional relationship of water pressure and velocity suggests that fluctuating bed separation was responsible for the velocity variations. The empirical functional relationship is compared to that of sliding over a perfectly lubricated sinusoidal bed. On the basis of the measured velocity-pressure relationship, this model predicts a reasonable value of bed roughness but too high a sliding velocity and unstable sliding at too low a water pressure. The main reason for this disagreement is probably the neglect of friction from debris in the sliding model.The measured water pressure was considerably higher than that predicted by the theory of steady flow through straight cylindrical channels near the glacier bed. Possible reasons are considered. The very large disagreement between measured and predicted pressure suggests that no straight cylindrical channels may have existed.


2014 ◽  
Vol 395 (5) ◽  
pp. 545-558 ◽  
Author(s):  
Jae-Hun Jeoung ◽  
Sebastian Goetzl ◽  
Sandra Elisabeth Hennig ◽  
Jochen Fesseler ◽  
Christina Wörmann ◽  
...  

Abstract The reductive acetyl-coenzyme A (acetyl-CoA) pathway, also known as the Wood-Ljungdahl pathway, allows reduction and condensation of two molecules of carbon dioxide (CO2) to build the acetyl-group of acetyl-CoA. Productive utilization of CO2 relies on a set of oxygen sensitive metalloenzymes exploiting the metal organic chemistry of nickel and cobalt to synthesize acetyl-CoA from activated one-carbon compounds. In addition to the central catalysts, CO dehydrogenase and acetyl-CoA synthase, ATPases are needed in the pathway. This allows the coupling of ATP binding and hydrolysis to electron transfer against a redox potential gradient and metal incorporation to (re)activate one of the central players of the pathway. This review gives an overview about our current knowledge on how these ATPases achieve their tasks of maturation and reductive activation.


2012 ◽  
Vol 49 (6) ◽  
pp. 651-658 ◽  
Author(s):  
Pérsio L.A. Barros ◽  
Petrucio J. Santos

A calculation method for the active earth pressure on the possibly inclined face of a retaining wall provided with a drainage system along the soil–structure interface is presented. The soil is cohesionless and fully saturated to the ground surface. This situation may arise during heavy rainstorms. To solve the problem, the water seepage through the soil is first analyzed using a numerical procedure based on the boundary element method. Then, the obtained pore-water pressure is used in a Coulomb-type formulation, which supposes a plane failure surface inside the backfill when the wall movement is enough to put the soil mass in the active state. The formulation provides coefficients of active pressure with seepage effect which can be used to evaluate the active earth thrust on walls of any height. A series of charts with values of the coefficients of active earth pressure with seepage calculated for selected values of the soil internal friction angle, the wall–soil friction angle, and the wall face inclination is presented.


2020 ◽  
Vol 14 (1) ◽  
pp. 287-308 ◽  
Author(s):  
Fabian Lindner ◽  
Fabian Walter ◽  
Gabi Laske ◽  
Florent Gimbert

Abstract. Hydraulic processes impact viscous and brittle ice deformation. Water-driven fracturing as well as turbulent water flow within and beneath glaciers radiate seismic waves which provide insights into otherwise hard-to-access englacial and subglacial environments. In this study, we analyze glaciohydraulic tremors recorded by four seismic arrays installed in different parts of Glacier de la Plaine Morte, Switzerland. Data were recorded during the 2016 melt season including the sudden subglacial drainage of an ice-marginal lake. Together with our seismic data, discharge, lake level, and ice flow measurements provide constraints on glacier hydraulics. We find that the tremors are generated by subglacial water flow, in moulins, and by icequake bursts. The dominating process can vary on sub-kilometer and sub-daily scales. Consistent with field observations, continuous source tracking via matched-field processing suggests a gradual up-glacier progression of an efficient drainage system as the melt season progresses. The ice-marginal lake likely connects to this drainage system via hydrofracturing, which is indicated by sustained icequake signals emitted from the proximity of the lake basin and starting roughly 24 h prior to the lake drainage. To estimate the hydraulics associated with the drainage, we use tremor–discharge scaling relationships. Our analysis suggests a pressurization of the subglacial environment at the drainage onset, followed by an increase in the hydraulic radii of the conduits and a subsequent decrease in the subglacial water pressure as the capacity of the drainage system increases. The pressurization is in phase with the drop in the lake level, and its retrieved maximum coincides with ice uplift measured via GPS. Our results highlight the use of cryo-seismology for monitoring glacier hydraulics.


2014 ◽  
Vol 8 (3) ◽  
pp. 959-976 ◽  
Author(s):  
C. Schoof ◽  
C. A Rada ◽  
N. J. Wilson ◽  
G. E. Flowers ◽  
M. Haseloff

Abstract. The presence of strong diurnal cycling in basal water pressure records obtained during the melt season is well established for many glaciers. The behaviour of the drainage system outside the melt season is less well understood. Here we present borehole observations from a surge-type valley glacier in the St Elias Mountains, Yukon Territory, Canada. Our data indicate the onset of strongly correlated multi-day oscillations in water pressure in multiple boreholes straddling a main drainage axis, starting several weeks after the disappearance of a dominant diurnal mode in August 2011 and persisting until at least January 2012, when multiple data loggers suffered power failure. Jökulhlaups provide a template for understanding spontaneous water pressure oscillations not driven by external supply variability. Using a subglacial drainage model, we show that water pressure oscillations can also be driven on a much smaller scale by the interaction between conduit growth and distributed water storage in smaller water pockets, basal crevasses and moulins, and that oscillations can be triggered when water supply drops below a critical value. We suggest this in combination with a steady background supply of water from ground water or englacial drainage as a possible explanation for the observed wintertime pressure oscillations.


Sign in / Sign up

Export Citation Format

Share Document