scholarly journals Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry

2020 ◽  
Vol 14 (3) ◽  
pp. 1051-1066 ◽  
Author(s):  
Andrea Walter ◽  
Martin P. Lüthi ◽  
Andreas Vieli

Abstract. Calving is a crucial process for the recently observed dynamic mass loss changes of the Greenland ice sheet. Despite its importance for global sea level change, major limitations in understanding the process of calving remain. This study presents high-resolution calving event data and statistics recorded with a terrestrial radar interferometer at the front of Eqip Sermia, a marine-terminating outlet glacier in Greenland. The derived digital elevation models with a spatial resolution of several metres recorded at 1 min intervals were processed to provide source areas and volumes of 906 individual calving events during a 6 d period. The calving front can be divided into sectors ending in shallow and deep water with different calving statistics and styles. For the shallow sector, characterized by an inclined and very high front, calving events are more frequent and larger than for the vertical ice cliff of the deep sector. We suggest that the calving volume deficiency of 90 % relative to the estimated ice flux in our observations of the deep sector is removed by oceanic melt, subaquatic calving, and small aerial calving events. Assuming a similar ice thickness for both sectors implies that subaqueous mass loss must be substantial for this sector with a contribution of up to 65 % to the frontal mass loss. The size distribution of the shallow sector is represented by a log-normal model, while for the deep sector the log-normal and power-law model fit well, but none of them are significantly better. Variations in calving activity and style between the sectors seem to be controlled by the bed topography and the front geometry. Within the short observation period no simple relationship between environmental forcings and calving frequency or event volume could be detected.


2019 ◽  
Author(s):  
Andrea Walter ◽  
Martin P. Lüthi ◽  
Andreas Vieli

Abstract. Calving is a crucial process for the recently observed dynamic mass loss changes of the Greenland ice sheet. Despite its importance for global sea level change, major limitations in understanding the calving process remain. This study presents calving event data and statistics recorded with a terrestrial radar interferometer at the front of Eqip Sermia, a marine terminating outlet glacier in Greenland. The data with a spatial resolution of several meters recorded at one-minute intervals was processed to provide source areas and volumes of 1700 individual calving events during a 6 day period. The calving front can be divided into sectors ending in shallow and deep water with different calving statistics and style. For the shallow sector, characterised by an inclined and very high front, calving events are more frequent and larger than for the vertical ice cliff of the deep sector. We suggest that the calving volume missing in our observations of the deep sector is removed by oceanic melt and subaquatic calving, which implies that subaqueous mass loss must be substantial for this sector with a contribution of up to 75 % to the frontal mass loss. The size distribution of the deep sector follows a power law, while the shallow sector is likely represented by a log-normal model. Variations in calving activity and style within the sectors seem to be controlled by the bed topography and the front geometry. Within the short observation period no clear relationship between environmental forcings and calving frequency or event volume could be detected.



1969 ◽  
Vol 31 ◽  
pp. 79-82 ◽  
Author(s):  
Camilla S. Andresen ◽  
Kristian K. Kjeldsen ◽  
Benjamin Harden ◽  
Niels Nørgaard-Pedersen ◽  
Kurt H. Kjær

During the past decades, the Greenland ice sheet has experienced a marked increase in mass loss resulting in an increased contribution to global sea-level rise. The three largest outlet glaciers in Greenland have increased their discharge, accelerated, thinned and retreated between 1996 and 2005. After 2005 most of them have slowed down again although not to previous levels. Geodetic observations suggest that rapid increase in mass loss from the north-western part of the ice sheet occurred during 2005–2010 (Kjeldsen et al. 2013).



2019 ◽  
Vol 13 (6) ◽  
pp. 1681-1694 ◽  
Author(s):  
Joe Todd ◽  
Poul Christoffersen ◽  
Thomas Zwinger ◽  
Peter Råback ◽  
Douglas I. Benn

Abstract. Iceberg calving accounts for between 30 % and 60 % of net mass loss from the Greenland Ice Sheet, which has intensified and is now the single largest contributor to global sea level rise in the cryosphere. Changes to calving rates and the dynamics of calving glaciers represent a significant uncertainty in projections of future sea level rise. A growing body of observational evidence suggests that calving glaciers respond rapidly to regional environmental change, but predictive capacity is limited by the lack of suitable models capable of simulating calving mechanisms realistically. Here, we use a 3-D full-Stokes calving model to investigate the environmental sensitivity of Store Glacier, a large outlet glacier in West Greenland. We focus on two environmental processes: undercutting by submarine melting and buttressing by ice mélange, and our results indicate that Store Glacier is likely to be able to withstand moderate warming perturbations in which the former is increased by 50 % and the latter reduced by 50 %. However, severe perturbation with a doubling of submarine melt rates or a complete loss of ice mélange destabilises the calving front in our model runs. Furthermore, our analysis reveals that stress and fracture patterns at Store's terminus are complex and varied, primarily due to the influence of basal topography. Calving style and environmental sensitivity vary greatly, with propagation of surface crevasses significantly influencing iceberg production in the northern side, whereas basal crevasses dominate in the south. Any future retreat is likely to be initiated in the southern side by a combination of increased submarine melt rates in summer and reduced mélange strength in winter. The lateral variability, as well as the importance of rotational and bending forces at the terminus, underlines the importance of using the 3-D full-Stokes stress solution when modelling Greenland's calving glaciers.



2021 ◽  
Vol 9 ◽  
Author(s):  
Andrea Kneib-Walter ◽  
Martin P. Lüthi ◽  
Luc Moreau ◽  
Andreas Vieli

Calving is a crucial process for the mass loss of outlet glaciers draining the Greenland ice sheet. Moreover, due to a lack of observations, calving contributes to large uncertainties in current glacier flow models and projections. Here we investigate the frequency, volume and style of calving events by using high-resolution terrestrial radar interferometer (TRI) data from six field campaigns, continuous daily and hourly time-lapse images over 6 years and 10-s time-lapse images recorded during two field campaigns. The results demonstrate that the calving front of Eqip Sermia, a fast flowing, highly crevassed outlet glacier in West Greenland, follows a clear seasonal cycle showing a distinct pattern in areas with subglacial discharge plumes, shallow bed topography and during the presence and retreat of proglacial ice mélange. Calving event volume, frequency and style vary strongly over time depending on the state in the seasonal cycle. Strong spatial differences between three distinctive front sectors with differing bed topography, water depth and calving front slope were observed. A distinct increase in calving activity occurs in the early melt season simultaneously when ice mélange disappears and meltwater plumes become visible at the fjord surface adjacent to the ice front. While reduced retreat of the front is observed in shallow areas, accelerated retreat occurred at locations with subglacial meltwater plumes. With the emergence of these plumes at the beginning of the melt season, larger full thickness calving events occur likely due to undercutting of the calving front. Later in the melt season the calving activity at subglacial meltwater plumes is similar to the neighboring areas, suggesting the presence of plumes to become less important for calving. The results highlight the significance of subglacial discharge and bed topography on the front geometry, the temporal variability of the calving process and the variability of calving styles.



2015 ◽  
Vol 9 (5) ◽  
pp. 4865-4892
Author(s):  
I. S. Muresan ◽  
S. A. Khan ◽  
A. Aschwanden ◽  
C. Khroulev ◽  
T. Van Dam ◽  
...  

Abstract. Observations over the past two decades show substantial ice loss associated with the speedup of marine terminating glaciers in Greenland. Here we use a regional 3-D outlet glacier model to simulate the behaviour of Jakobshavn Isbræ (JI) located in west Greenland. Using atmospheric and oceanic forcing we tune our model to reproduce the observed frontal changes of JI during 1990–2014. We identify two major accelerations. The first occurs in 1998, and is triggered by moderate thinning prior to 1998. The second acceleration, which starts in 2003 and peaks in summer 2004, is triggered by the final breakup of the floating tongue, which generates a reduction in buttressing at the JI terminus. This results in further thinning, and as the slope steepens inland, sustained high velocities have been observed at JI over the last decade. As opposed to other regions on the Greenland Ice Sheet (GrIS), where dynamically induced mass loss has slowed down over recent years, both modelled and observed results for JI suggest a continuation of the acceleration in mass loss. Further, we find that our model is not able to capture the 2012 peak in the observed velocities. Our analysis suggests that the 2012 acceleration of JI is likely the result of an exceptionally long melt season dominated by extreme melt events. Considering that such extreme surface melt events are expected to intensify in the future, our findings suggest that the 21st century projections of the GrIS mass loss and the future sea level rise may be larger than predicted by existing modelling results.



2021 ◽  
Vol 15 (2) ◽  
pp. 1015-1030 ◽  
Author(s):  
Aurélien Quiquet ◽  
Christophe Dumas

Abstract. Polar amplification will result in amplified temperature changes in the Arctic with respect to the rest of the globe, making the Greenland ice sheet particularly vulnerable to global warming. While the ice sheet has been showing an increased mass loss in the past decades, its contribution to global sea level rise in the future is of primary importance since it is at present the largest single-source contribution after the thermosteric contribution. The question of the fate of the Greenland and Antarctic ice sheets for the next century has recently gathered various ice sheet models in a common framework within the Ice Sheet Model Intercomparison Project for the Coupled Model Intercomparison Project – phase 6 (ISMIP6). While in a companion paper we present the GRISLI-LSCE (Grenoble Ice Sheet and Land Ice model of the Laboratoire des Sciences du Climat et de l'Environnement) contribution to ISMIP6-Antarctica, we present here the GRISLI-LSCE contribution to ISMIP6-Greenland. We show an important spread in the simulated Greenland ice loss in the future depending on the climate forcing used. The contribution of the ice sheet to global sea level rise in 2100 can thus be from as low as 20 mm sea level equivalent (SLE) to as high as 160 mm SLE. Amongst the models tested in ISMIP6, the Coupled Model Intercomparison Project – phase 6 (CMIP6) models produce larger ice sheet retreat than their CMIP5 counterparts. Low-emission scenarios in the future drastically reduce the ice mass loss. The oceanic forcing contributes to about 10 mm SLE in 2100 in our simulations. In addition, the dynamical contribution to ice thickness change is small compared to the impact of surface mass balance. This suggests that mass loss is mostly driven by atmospheric warming and associated ablation at the ice sheet margin. With additional sensitivity experiments we also show that the spread in mass loss is only weakly affected by the choice of the ice sheet model mechanical parameters.



1969 ◽  
Vol 31 ◽  
pp. 87-90
Author(s):  
Morten L. Andersen ◽  
Signe B. Andersen ◽  
Lars Stenseng ◽  
Henriette Skourup ◽  
William Colgan ◽  
...  

The Greenland ice sheet is losing mass to the ocean at an increasing rate (Thomas et al. 2006). During the 1980s the ice sheet was believed to be in near-equilibrium (van den Broeke et al. 2009). Within the first decade of the 21st century, however, a net negative balance was observed. Greenland’s present rate of ice loss is c. 250 Gt yr–1, equivalent to a sea-level rise contribution of c. 0.69 mm yr–1. The rate of ice loss has increased over the post 1992 observation period (Shepherd et al. 2012).



2008 ◽  
Vol 15 ◽  
pp. 61-64 ◽  
Author(s):  
Andreas P. Ahlstrøm ◽  
* PROMICE project team

The Greenland ice sheet has been losing mass at a dramatic rate in recent years, raising political concern worldwide due to the possible impact on global sea level rise and climate dynamics (Luthcke et al. 2006; Rignot & Kanagaratnam 2006; Velicogna & Wahr 2006; IPCC 2007; Shepherd & Wingham 2007). The Arctic region as a whole is warming up much more rapidly than the globe at large (ACIA 2005) and it is desirable to quantify these changes in order to provide the decision-makers with a firm knowledge base. To cover this need, the Danish Ministry of Climate and Energy has now launched a new Programme for Monitoring of the Green- land Ice Sheet (PROMICE), designed and operated by the Geological Survey of Denmark and Greenland (GEUS) in collaboration with the National Space Institute at the Tech nical University of Denmark and Asiaq (Greenland Survey). The aim of the programme is to quantify the annual mass loss of the Greenland ice sheet, track changes in the extent of local glaciers and ice caps, and track changes in the position of the ice-sheet margin.



2012 ◽  
Vol 53 (60) ◽  
pp. 281-293 ◽  
Author(s):  
Ute C. Herzfeld ◽  
James Fastook ◽  
Ralf Greve ◽  
Brian McDonald ◽  
Bruce F. Wallin ◽  
...  

AbstractPrediction of future changes in dynamics of the Earth’s ice sheets, mass loss and resultant contribution to sea-level rise are the main objectives of ice-sheet modeling. Mass transfer from ice sheet to ocean is, in large part, through outlet glaciers. Subglacial topography plays an important role in ice dynamics; however, trough systems have not been included in bed digital elevation models (DEMS) used in modeling, because their size is close to the model resolution. Using recently collected CReSIS MCoRDs data of subglacial topography and an algorithm that allows topographically and morphologically correct integration of troughs and trough systems at any modeling scale (5 km resolution for SeaRISE), an improved Greenland bed DEM was developed that includes Jakobshavn Isbræ, Helheim, Kangerdlussuaq and Petermann glaciers (JakHelKanPet DEM). Contrasting the different responses of two Greenland ice-sheet models (UMISM and SICOPOLIS) to the more accurately represented bed shows significant differences in modeled surface velocity, basal water production and ice thickness. Consequently, modeled ice volumes for the Greenland ice sheet are significantly smaller using the JakHelKanPet DEM, and volume losses larger. More generally, the study demonstrates the role of spatial modeling of data specifically as input for dynamic ice-sheet models in assessments of future sea-level rise.



2018 ◽  
Author(s):  
Jiangjun Ran ◽  
Miren Vizcaino ◽  
Pavel Ditmar ◽  
Michiel R. van den Broeke ◽  
Twila Moon ◽  
...  

Abstract. The Greenland Ice Sheet (GrIS) is currently losing ice mass as the result of changes in the complex ice-climate interactions that have been driven by global climate change. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry mission GRACE, surface mass balance (SMB) output of RACMO 2.3, and ice discharge estimates to analyze the mass budget of Greenland at various temporal and spatial scales. Firstly, in agreement with previous estimates, we find that the rate of mass loss from Greenland observed by GRACE was between −277 and −269 Gt/yr in 2003–2012. This estimate is consistent with the sum of individual contributions: surface mass balance (SMB, around 216 ± 122 Gt/yr) and ice discharge (520 ± 31 Gt/yr), indicating a good performance of the regional climate model. Secondly, we examine the average accelerations of mass anomalies in Greenland over 2003–2012, suggesting that the SMB (−23.3 ± 2.7 Gt/yr2) contributes 75 % to the total acceleration observed by GRACE. The remaining contributions to the mass loss acceleration for entire Greenland are statistically insignificant. Finally and most importantly, this study suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. The robustness of this estimate is demonstrated by using both different GRACE-based solutions and different meltwater runoff estimates (namely, RACMO 2.3 and SNOWPACK). Meltwater storage in the ice sheet occurs primarily due to storage in the high-accumulation regions of the southeast (SE) and northwest (NW) parts of Greenland. Analysis of seasonal variations in outlet glacier discharge shows that the contribution of ice discharge to the observed signal is minor (at the level of only a few Gt) and does not explain the intra-annual differences between the total mass and SMB signals.



Sign in / Sign up

Export Citation Format

Share Document