scholarly journals Spatial variability in mass change of glaciers in the Everest region, central Himalaya, between 2000 and 2015

Author(s):  
Owen King ◽  
Duncan J. Quincey ◽  
Jonathan L. Carrivick ◽  
Ann V. Rowan

Abstract. The mass balance of the majority of Himalayan glaciers is currently negative, and has been for several decades. Region wide averaging of mass change estimates has masked any catchment or glacier scale variability in glacier recession, thus the role of a number of glaciological processes in glacier wastage remains poorly understood. In this study, we quantify surface lowering and mass loss rates for the ablation areas of 32 glaciers in different catchments across the Everest region, and specifically examine the role of glacial lakes in glacier mass change. We then assess how future ice loss is likely to differ depending on glacier hypsometry. Spatially variable ice loss is observed within and between the Dudh Koshi and Tama Koshi catchments and glaciers that flow onto the Tibetan Plateau. Surface lowering rates on glaciers flowing onto the Tibetan Plateau are 54 and 19 % greater than those flowing southward into the Dudh Koshi and Tama Koshi catchments, respectively. Surface lowering rates of up to −3.78 ± 0.26 m a-1 occurred on some lacustrine terminating glaciers, although glaciers with small lakes showed rates of lowering comparable with those that terminate on land. We suggest that such a range reflects glacial lakes at different stages of development, and that rates of mass loss are likely to increase as glacial lakes expand and deep water calving begins to occur. Hypsometric data reveal a coincidence of the altitude of maximum surface lowering and the main glacier hypsometry in the Dudh Koshi catchment, thus a large volume of ice is readily available for melt. Should predicted CMIP5 RCP 4.5 scenario warming (0.9–2.3 °C by 2100) occur in the study area, 19–30, 17–50 and 14–37 % increases in the total glacierised area below the Equilibrium Line Altitude will occur in the Dudh Koshi and Tama Koshi catchments, and on the Tibetan Plateau. Comparison of our data with a conceptual model of Himalayan glacier shrinkage confirms the presence of three distinct process regimes, with all glaciers in our sample now in a state of accelerating mass loss and meltwater storage.

2017 ◽  
Vol 11 (1) ◽  
pp. 407-426 ◽  
Author(s):  
Owen King ◽  
Duncan J. Quincey ◽  
Jonathan L. Carrivick ◽  
Ann V. Rowan

Abstract. Region-wide averaging of Himalayan glacier mass change has masked any catchment or glacier-scale variability in glacier recession; thus the role of a number of glaciological processes in glacier wastage remains poorly understood. In this study, we quantify mass loss rates over the period 2000–2015 for 32 glaciers across the Everest region and assess how future ice loss is likely to differ depending on glacier hypsometry. The mean mass balance of all 32 glaciers in our sample was −0.52 ± 0.22 m water equivalent (w.e.) a−1. The mean mass balance of nine lacustrine-terminating glaciers (−0.70 ± 0.26 m w.e. a−1) was 32 % more negative than land-terminating, debris-covered glaciers (−0.53 ± 0.21 m w.e. a−1). The mass balance of lacustrine-terminating glaciers is highly variable (−0.45 ± 0.13 to −0.91 ± 0.22 m w.e. a−1), perhaps reflecting glacial lakes at different stages of development. To assess the importance of hypsometry on glacier response to future temperature increases, we calculated current (Dudh Koshi – 0.41, Tama Koshi – 0.43, Pumqu – 0.37) and prospective future glacier accumulation area Ratios (AARs). IPCC AR5 RCP 4.5 warming (0.9–2.3 °C by 2100) could reduce AARs to 0.29 or 0.08 in the Tama Koshi catchment, 0.27 or 0.17 in the Dudh Koshi catchment and 0.29 or 0.18 in the Pumqu catchment. Our results suggest that glacial lake expansion across the Himalayas could expedite ice mass loss and the prediction of future contributions of glacial meltwater to river flow will be complicated by spatially variable glacier responses to climate change.


2020 ◽  
Vol 12 (3) ◽  
pp. 472 ◽  
Author(s):  
Lin Liu ◽  
Liming Jiang ◽  
Zhimin Zhang ◽  
Hansheng Wang ◽  
Xiaoli Ding

The headwaters of many Asian rivers are at mountain glaciers of the Tibetan Plateau. Glacier melt-water is a non-negligible contributor of river runoff, especially for a drought year. However, the observation of mass glacier changes was scarce in recent years. Here, we estimated the recent glacier mass change of the Geladandong mountain, by differencing the digital elevation models (DEMs) produced from ZiYuan-3 images and TanDEM-X data. Moreover, we compared the SRTM-C DEM with TanDEM-X DEMs to retrieve glacier mass balances since 2000. The annual mass loss rates of −0.11 ± 0.03 and −0.47 ± 0.09 m w.e. yr−1 were derived in 2000–2012 and 2012−2018, respectively. This result revealed an accelerating rate of negative glacier mass changes during recent years, which is mainly caused by the significant increase of mass loss over non-surge glaciers, rather than surge-type glaciers, which held a slight increase of mass loss. In addition, we found a pronounced discrepancy of glacier mass change between non-surge and surge-type glaciers during 2012−2018, and suggested that this difference may be caused by the heterogeneous responses of surge-type glaciers to climate variations, because of the different timing and type of surge events.


Tellus B ◽  
2019 ◽  
Vol 71 (1) ◽  
pp. 1577070 ◽  
Author(s):  
Qianshan He ◽  
Xiangdong Zheng ◽  
Jian Li ◽  
Wei Gao ◽  
Yanyu Wang ◽  
...  

2020 ◽  
Vol 221 (3) ◽  
pp. 1971-1983
Author(s):  
Lin Chen ◽  
Lijun Liu ◽  
Fabio A Capitanio ◽  
Taras V Gerya ◽  
Yang Li

SUMMARY The Tibetan crust is sliced by several east–west trending suture zones. The role of these suture zones in the evolution of the Himalayan range and Tibetan plateau remains unclear. Here we use 3-D thermomechanical simulations to investigate the role of pre-existing weak zones within the Asian Plate in the formation of orogen and plateau growth during continental collision. Our results show that partitioning of deformation along the convergent margin leads to scraping off of crustal material into an orogenic wedge above the margin and crustal thickening in the retro-continent, eventually forming a large orogenic plateau in front of the indenter. Pre-existing weak zone(s) within the retro-continent is reactivated at the early stage of convergence, and facilitates the northward propagation of strain and widening of the orogenic plateau. The northernmost weak zone sets the northern limit of the Tibetan plateau. Our models also show rheological weakening of the congested buoyant crust within the collisional zone drives wedge-type exhumation of deeply buried crust at the southern flank of the plateau, which may explain the formation of the Greater Himalayan Sequence.


2018 ◽  
Vol 89 (2) ◽  
pp. 494-504 ◽  
Author(s):  
Hang Cui ◽  
Jie Wang ◽  
Beibei Yu ◽  
Zhenbo Hu ◽  
Pan Yao ◽  
...  

AbstractGlacial extent mapping and dating indicate that the local last glacial maximum (LLGM) of the northeastern Tibetan Plateau occurred during mid-Marine Isotope Stage (MIS) 3. This is asynchronous with the global last glacial maximum (LGM) that occurred during MIS 2. The causes underlying this asynchronicity are the subject of ongoing debate, and paleoclimatic reconstructions are a key to advancing understanding of the climatic influence on the spatial and temporal patterns of paleoglaciation. We used multiple methods to reconstruct the equilibrium-line altitude (ELA) of the Die Shan paleo-ice cap on the northeastern Tibetan Plateau, and to infer past temperature for ice maximum positions believed to be mid-MIS 3 in age, based on regional correlation. Geomorphic ELA reconstructions combined with an energy and mass balance model yield a paleo-ELA of 4117±31 m asl (786 m lower than present) with temperature depressions of 3.8 to ~4.6°C compared to the present. This is less than the LGM reconstruction of temperature depression inferred from other climatic proxy records on the Tibetan Plateau and suggests that the LLGM glacial advance was a product of lower temperatures and slightly reduced precipitation compared to present, whereas the LGM was a more restricted advance in which much colder conditions were combined with much lower precipitation.


2019 ◽  
Vol 64 (7) ◽  
pp. 435-445 ◽  
Author(s):  
Simon Keith Allen ◽  
Guoqing Zhang ◽  
Weicai Wang ◽  
Tandong Yao ◽  
Tobias Bolch

2016 ◽  
Vol 20 (1) ◽  
pp. 108-122 ◽  
Author(s):  
Zhanhuan Shang ◽  
Andrew White ◽  
A. Allan Degen ◽  
Ruijun Long

2016 ◽  
Vol 48 (5-6) ◽  
pp. 1705-1721 ◽  
Author(s):  
Yanhong Gao ◽  
Linhong Xiao ◽  
Deliang Chen ◽  
Fei Chen ◽  
Jianwei Xu ◽  
...  

2020 ◽  
Author(s):  
Yuting Wu ◽  
Xiaoming Hu ◽  
Ziqian Wang ◽  
Zhenning Li ◽  
Song Yang

<p>The surface temperature cold bias over the Tibetan Plateau (TP) is a long-lasting problem in both reanalysis data and climate models. While previous studies have mainly focused on local processes for this bias, the TP surface temperature is also closely related to tropical SST in both observations and Coupled Model Inter-comparison Project (CMIP5) models. This study investigates the role of tropical SST climatological bias in the TP surface temperature cold bias, and analysis of CMIP5 models suggests that the surface temperature cold bias over the TP is more obvious (about 4 K) in winter, with an east-west distribution pattern, than in summer (about 1 K), with a south-north distribution pattern. Considering that the tropical SST bias in CMIP5 models may be an important source of the TP surface temperature cold bias, a series of model experiments were conducted by the NCAR CAM4 to test the hypothesis. Model experiment results show that the tropical SST bias can reproduce cold bias over the TP, with 2 K in winter and about 0.5 K in summer. The mechanisms for TP surface temperature cold bias are different in winter and summer. In winter, tropical SST bias influences the TP surface temperature mainly by anomalous snow cover, while anomalous precipitation and clouds are more important for the temperature bias in summer.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Owen King ◽  
Atanu Bhattacharya ◽  
Rakesh Bhambri ◽  
Tobias Bolch

AbstractHeterogeneous glacier mass loss has occurred across High Mountain Asia on a multi-decadal timescale. Contrasting climatic settings influence glacier behaviour at the regional scale, but high intra-regional variability in mass loss rates points to factors capable of amplifying glacier recession in addition to climatic change along the Himalaya. Here we examine the influence of surface debris cover and glacial lakes on glacier mass loss across the Himalaya since the 1970s. We find no substantial difference in the mass loss of debris-covered and clean-ice glaciers over our study period, but substantially more negative (−0.13 to −0.29 m w.e.a−1) mass balances for lake-terminating glaciers, in comparison to land-terminating glaciers, with the largest differences occurring after 2000. Despite representing a minor portion of the total glacier population (~10%), the recession of lake-terminating glaciers accounted for up to 32% of mass loss in different sub-regions. The continued expansion of established glacial lakes, and the preconditioning of land-terminating glaciers for new lake development increases the likelihood of enhanced ice mass loss from the region in coming decades; a scenario not currently considered in regional ice mass loss projections.


Sign in / Sign up

Export Citation Format

Share Document