scholarly journals Glacio-hydrological melt and runoff modelling: a limits of acceptability framework for model selection

2018 ◽  
Author(s):  
Jonathan D. Mackay ◽  
Nicholas E. Barrand ◽  
David M. Hannah ◽  
Stefan Krause ◽  
Christopher R. Jackson ◽  
...  

Abstract. Glacio-hydrological models (GHMs) underpin our understanding how future climate change will affect river flow regimes in glaciated watersheds. A variety of simplified GHM structures and parameterisations exist, yet the performance of these are rarely quantified at the process-level or with metrics beyond global summary statistics. A fuller understanding of the deficiencies in competing model structures and parameterisations and the ability of models to simulate physical processes require performance metrics utilising the full range of uncertainty information within input observations. Here, the glacio-hydrological characteristics of the Virkisá river basin in southern Iceland are characterised using 33 signatures derived from observations of ice melt, snow coverage and river discharge. The uncertainty of each set of observations are harnessed to define limits of acceptability (LOA), a set of criteria used to objectively evaluate the acceptability of different GHM structures and parameterisations. This framework is used to compare and diagnose deficiencies in three melt and three runoff-routing model structures. Increased model complexity is shown to improve acceptability when evaluated against specific signatures, but does not always result in better consistency across all signatures, emphasising the difficulty in appropriate model selection and the need for multi-model prediction approaches to account for model selection uncertainty. Melt and runoff-routing structures demonstrate a hierarchy of influence on river discharge signatures with melt model structure having the most influence on discharge hydrograph seasonality and runoff-routing structure on shorter-timescale discharge events. None of the tested GHM structural configurations returned acceptable simulations across the full population of signatures. The framework outlined here provides a comprehensive and rigorous assessment tool for evaluating the acceptability of different GHM process hypotheses. Future melt and runoff model forecasts should seek to diagnose structural model deficiencies and evaluate diagnostic signatures of system behaviour using the LOA framework.

2018 ◽  
Vol 12 (7) ◽  
pp. 2175-2210 ◽  
Author(s):  
Jonathan D. Mackay ◽  
Nicholas E. Barrand ◽  
David M. Hannah ◽  
Stefan Krause ◽  
Christopher R. Jackson ◽  
...  

Abstract. Glacio-hydrological models (GHMs) allow us to develop an understanding of how future climate change will affect river flow regimes in glaciated watersheds. A variety of simplified GHM structures and parameterisations exist, yet the performance of these are rarely quantified at the process level or with metrics beyond global summary statistics. A fuller understanding of the deficiencies in competing model structures and parameterisations and the ability of models to simulate physical processes require performance metrics utilising the full range of uncertainty information within input observations. Here, the glacio-hydrological characteristics of the Virkisá River basin in southern Iceland are characterised using 33 signatures derived from observations of ice melt, snow coverage and river discharge. The uncertainty of each set of observations is harnessed to define the limits of acceptability (LOA), a set of criteria used to objectively evaluate the acceptability of different GHM structures and parameterisations. This framework is used to compare and diagnose deficiencies in three melt and three run-off-routing model structures. Increased model complexity is shown to improve acceptability when evaluated against specific signatures but does not always result in better consistency across all signatures, emphasising the difficulty in appropriate model selection and the need for multi-model prediction approaches to account for model selection uncertainty. Melt and run-off-routing structures demonstrate a hierarchy of influence on river discharge signatures with melt model structure having the most influence on discharge hydrograph seasonality and run-off-routing structure on shorter-timescale discharge events. None of the tested GHM structural configurations returned acceptable simulations across the full population of signatures. The framework outlined here provides a comprehensive and rigorous assessment tool for evaluating the acceptability of different GHM process hypotheses. Future melt and run-off model forecasts should seek to diagnose structural model deficiencies and evaluate diagnostic signatures of system behaviour using a LOA framework.


2019 ◽  
Vol 23 (10) ◽  
pp. 4011-4032 ◽  
Author(s):  
Rosanna A. Lane ◽  
Gemma Coxon ◽  
Jim E. Freer ◽  
Thorsten Wagener ◽  
Penny J. Johnes ◽  
...  

Abstract. Benchmarking model performance across large samples of catchments is useful to guide model selection and future model development. Given uncertainties in the observational data we use to drive and evaluate hydrological models, and uncertainties in the structure and parameterisation of models we use to produce hydrological simulations and predictions, it is essential that model evaluation is undertaken within an uncertainty analysis framework. Here, we benchmark the capability of several lumped hydrological models across Great Britain by focusing on daily flow and peak flow simulation. Four hydrological model structures from the Framework for Understanding Structural Errors (FUSE) were applied to over 1000 catchments in England, Wales and Scotland. Model performance was then evaluated using standard performance metrics for daily flows and novel performance metrics for peak flows considering parameter uncertainty. Our results show that lumped hydrological models were able to produce adequate simulations across most of Great Britain, with each model producing simulations exceeding a 0.5 Nash–Sutcliffe efficiency for at least 80 % of catchments. All four models showed a similar spatial pattern of performance, producing better simulations in the wetter catchments to the west and poor model performance in central Scotland and south-eastern England. Poor model performance was often linked to the catchment water balance, with models unable to capture the catchment hydrology where the water balance did not close. Overall, performance was similar between model structures, but different models performed better for different catchment characteristics and metrics, as well as for assessing daily or peak flows, leading to the ensemble of model structures outperforming any single structure, thus demonstrating the value of using multi-model structures across a large sample of different catchment behaviours. This research evaluates what conceptual lumped models can achieve as a performance benchmark and provides interesting insights into where and why these simple models may fail. The large number of river catchments included in this study makes it an appropriate benchmark for any future developments of a national model of Great Britain.


2020 ◽  
Author(s):  
Alexandre Tuel ◽  
Nabil El Moçayd ◽  
Moulay Driss Hasnaoui ◽  
Elfatih A. B. Eltahir

Abstract. The High Atlas, culminating at more than 4000 m, is the water tower of Morocco. While plains receive less than 400 mm of precipitation in an average year, the mountains can get twice as much, often in the form of snow between November and March. Snowmelt thus accounts for a large fraction of the river discharge in the region, and is particularly critical during spring, as the wet season ends but the need for irrigation increases. In the same region, future climate change projections point towards a significant decline in precipitation and enhanced warming of temperature. Understanding how the High Atlas snowpack will evolve under such trends is therefore of paramount importance to make informed projections of future water availability in Morocco. Here, we build on previous research results on snow and climate modeling in the High Atlas to make detailed projections of snowpack and river flow response to climate change in this region. Using a distributed energy balance snow model based on SNOW-17, high-resolution climate simulations over Morocco, and a panel regression framework to relate runoff ratios to regional meteorological conditions, we quantify the severe declines in snowpack and river discharge that are to be expected, even under a scenario of substantial mitigation of emissions. Our results have important implications for water resources planning and sustainability of agriculture in this already water-stressed region.


2019 ◽  
Author(s):  
Rosanna A. Lane ◽  
Gemma Coxon ◽  
Jim E. Freer ◽  
Thorsten Wagener ◽  
Penny J. Johnes ◽  
...  

Abstract. Benchmarking model performance across large samples of catchments is useful to guide future model development. Given uncertainties in the observational data we use to drive and evaluate hydrological models, and uncertainties in the structure and parameterisation of models we use to produce hydrological simulations and predictions, it is essential that model evaluation is undertaken within an uncertainty analysis framework. Here, we benchmark the capability of multiple, lumped hydrological models across Great Britain, by focusing on daily flow and peak flow simulation. Four hydrological model structures from the Framework for Understanding Structural Errors (FUSE) were applied to over 1100 catchments. Model performance was then evaluated using a standard performance metric for daily flows, and more novel performance metrics for peak flows considering parameter uncertainty. Our results show that simple, lumped hydrological models were able to produce adequate simulations across most of Great Britain, with median Nash–Sutcliffe efficiency scores of 0.72–0.78 across all catchments. All four models showed a similar spatial pattern of performance, producing better simulations in the wetter catchments to the west, and poor model performance in Scotland and southeast England. Poor model performance was often linked to the catchment water balance, with models unable to capture the catchment hydrology where the water balance did not close. Overall, performance was similar between model structures, but different models performed better for different catchment characteristics and for assessing daily or peak flows, demonstrating the value of using an ensemble of model structures. This research demonstrates what conceptual lumped models can achieve as a performance benchmark, as well as providing interesting insights into where and why these simple models may fail. The large number of river catchments included in this study makes it an appropriate benchmark for any future developments of a national model of Great Britain.


Author(s):  
Lusungu Nkhoma ◽  
Cosmo Ngongondo ◽  
Zuze Dulanya ◽  
Maurice Monjerezi

Abstract Climate and land use change (CC and LUC hereafter) are interlinked factors that can lead to river flow regime changes, as well as affecting hydrological extremes such as floods and drought. There is now considerable evidence of CC and LUC in many catchments in Malawi but without corresponding evaluations of their impacts on river flow regimes. Therefore, this study assessed how both factors affect the flow regime of Wamkurumadzi River, a key tributary of the major Shire River in southern Malawi. Land use and hydroclimatic data for the basin were first analyzed for spatial–temporal trends in the historical period between the years 1984 and 2015. The Soil and Water Assessment Tool (SWAT) model was then applied with different LUC and CC scenarios in order to assess their sole and combined impacts on the river flow regime. The model was calibrated and validated using the split sample method from the year 1984 to 1999 and from the year 2000 to 2015. Model performance was acceptable according to the selected evaluation criteria, with the Nash–Sutcliffe (NSE) coefficient of 0.78 and coefficient of determination (R2) of 0.96 during calibration and NSE of 0.93 and R2 of 0.98 during validation. Results of the integrated impacts of LUC and CC suggest a slight increase in river discharge of 0.05 m3/s for the period between the 1980s and 2000s. During the 1980s–1990s, both CC through rainfall decreased and LUC resulted in decreases in the mean river discharges by 1.58 and 0.37 m3/s, respectively. The study also found that CC through increased rainfall in the 1990s–2000s decades saw an overall increase of 1.39 m3/s in mean river discharge, while LUC shows the increase of mean river discharge by 0.25 m3/s. However, the study observed that reforestation efforts in the basin were greatly responsible for the alteration of the river flow regime in the later period.


Author(s):  
Matheus Souisa ◽  
Paulus R. Atihuta ◽  
Josephus R. Kelibulin

Ambon City is a region consisting of hilly areas and steep slopes with diverse river characteristics. Research has been carried out in the Wae Ruhu watershed in Ambon City which starts from upstream (water catchment) to downstream. This study aims to determine the magnitude of river discharge and sediment discharge in the Wae Ruhu watershed. This research was conducted in several stages including, secondary data collection, research location survey, preparation of research tools and materials as well as field data retrieval processes which included tracking coordinates at each station point and entire watershed, calculation of river flow velocity, river geometry measurements, and sampling sediment. The results showed that the average river discharge in the Wae watershed in the year 2018 was 1.24 m3 / s, and the average sediment discharge was 6.27 kg / s. From the results of this study and the field observations proposed for flood prevention and the rate of sediment movement are the construction of cliffs with sheet pile and gabions.


2003 ◽  
Vol 785 ◽  
Author(s):  
Seth S. Kessler ◽  
S. Mark Spearing

ABSTRACTEmbedded structural health monitoring systems are envisioned to be an important component of future transportation systems. One of the key challenges in designing an SHM system is the choice of sensors, and a sensor layout, which can detect unambiguously relevant structural damage. This paper focuses on the relationship between sensors, the materials of which they are made, and their ability to detect structural damage. Sensor selection maps have been produced which plot the capabilities of the full range of available sensor types vs. the key performance metrics (power consumption, resolution, range, sensor size, coverage). This exercise resulted in the identification of piezoceramic Lamb wave transducers as the sensor of choice. Experimental results are presented for the detailed selection of piezoceramic materials to be used as Lamb wave transducers.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


2012 ◽  
Vol 29 (4) ◽  
pp. 613-628 ◽  
Author(s):  
Steven L. Morey ◽  
Dmitry S. Dukhovskoy

Abstract Statistical analysis methods are developed to quantify the impacts of multiple forcing variables on the hydrographic variability within an estuary instrumented with an enduring observational system. The methods are applied to characterize the salinity variability within Apalachicola Bay, a shallow multiple-inlet estuary along the northeastern Gulf of Mexico coast. The 13-yr multivariate time series collected by the National Estuary Research Reserve at three locations within the bay are analyzed to determine how the estuary responds to variations in external forcing mechanisms, such as freshwater discharge, precipitation, tides, and local winds at multiple time scales. The analysis methods are used to characterize the estuarine variability under differing flow regimes of the Apalachicola River, a managed waterway, with particular focus on extreme events and scales of variability that are critical to local ecosystems. Multivariate statistical models are applied that describe the salinity response to winds from multiple directions, river flow, and precipitation at daily, weekly, and monthly time scales to understand the response of the estuary under different climate regimes. Results show that the salinity is particularly sensitive to river discharge and wind magnitude and direction, with local precipitation being largely unimportant. Applying statistical analyses with conditional sampling quantifies how the likelihoods of high-salinity and long-duration high-salinity events, conditions of critical importance to estuarine organisms, change given the state of the river flow. Intraday salinity range is shown to be negatively correlated with the salinity, and correlated with river discharge rate.


2016 ◽  
Vol 20 (3) ◽  
pp. 1177-1195 ◽  
Author(s):  
Huayang Cai ◽  
Hubert H. G. Savenije ◽  
Chenjuan Jiang ◽  
Lili Zhao ◽  
Qingshu Yang

Abstract. The mean water level in estuaries rises in the landward direction due to a combination of the density gradient, the tidal asymmetry, and the backwater effect. This phenomenon is more prominent under an increase of the fresh water discharge, which strongly intensifies both the tidal asymmetry and the backwater effect. However, the interactions between tide and river flow and their individual contributions to the rise of the mean water level along the estuary are not yet completely understood. In this study, we adopt an analytical approach to describe the tidal wave propagation under the influence of substantial fresh water discharge, where the analytical solutions are obtained by solving a set of four implicit equations for the tidal damping, the velocity amplitude, the wave celerity, and the phase lag. The analytical model is used to quantify the contributions made by tide, river, and tide–river interaction to the water level slope along the estuary, which sheds new light on the generation of backwater due to tide–river interaction. Subsequently, the method is applied to the Yangtze estuary under a wide range of river discharge conditions where the influence of both tidal amplitude and fresh water discharge on the longitudinal variation of the mean tidal water level is explored. Analytical model results show that in the tide-dominated region the mean water level is mainly controlled by the tide–river interaction, while it is primarily determined by the river flow in the river-dominated region, which is in agreement with previous studies. Interestingly, we demonstrate that the effect of the tide alone is most important in the transitional zone, where the ratio of velocity amplitude to river flow velocity approaches unity. This has to do with the fact that the contribution of tidal flow, river flow, and tide–river interaction to the residual water level slope are all proportional to the square of the velocity scale. Finally, we show that, in combination with extreme-value theory (e.g. generalized extreme-value theory), the method may be used to obtain a first-order estimation of the frequency of extreme water levels relevant for water management and flood control. By presenting these analytical relations, we provide direct insight into the interaction between tide and river flow, which will be useful for the study of other estuaries that experience substantial river discharge in a tidal region.


Sign in / Sign up

Export Citation Format

Share Document