scholarly journals Permafrost Variability over the Northern Hemisphere Based on the MERRA-2 Reanalysis

2018 ◽  
Author(s):  
Jing Tao ◽  
Randal D. Koster ◽  
Rolf H. Reichle ◽  
Barton A. Forman ◽  
Yuan Xue ◽  
...  

Abstract. This study introduces and evaluates a comprehensive, model-generated dataset of Northern Hemisphere permafrost conditions. Surface meteorological forcing fields from the Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2) reanalysis data were used to drive an improved version of the land component of MERRA-2 in middle-to-high northern latitudes from 1980 to 2017. The resulting simulated permafrost distribution across the Northern Hemisphere captures well the observed extent of continuous permafrost except in Western Siberia, which is permafrost-free in the simulation. Noticeable discrepancies also appear along the southern edge of the permafrost region where sporadic and isolated permafrost types dominate. The evaluation of the simulated active layer thickness (ALT) climatology against in-situ measurements demonstrates reasonable skill except in Mongolia. In northern Alaska, both ALT retrievals from airborne remote sensing for 2015 and the corresponding simulated ALT exhibit reasonable accuracy vs. in-situ measurements. However, the remotely sensed ALT retrievals generally demonstrate lower levels of spatial variability than both the observed and simulated ALT. Controls on the spatial variability of ALT are examined with idealized numerical experiments focusing on northern Alaska; meteorological forcing and soil type are found to have dominant impacts on the spatial variability of ALT, with vegetation also playing a role through its modulation of snow accumulation. A correlation analysis further reveals that accumulated air temperature and maximum snow water equivalent (SWE) explain most of the year-to-year variability of ALT nearly everywhere over the model-simulated permafrost regions. Simulated ALT trends from 1980 to 2017 indicate that some permafrost areas are experiencing significant degradation, with ALT increasing up to 0.5 cm/year.

2019 ◽  
Vol 13 (8) ◽  
pp. 2087-2110 ◽  
Author(s):  
Jing Tao ◽  
Randal D. Koster ◽  
Rolf H. Reichle ◽  
Barton A. Forman ◽  
Yuan Xue ◽  
...  

Abstract. This study introduces and evaluates a comprehensive, model-generated dataset of Northern Hemisphere permafrost conditions at 81 km2 resolution. Surface meteorological forcing fields from the Modern-Era Retrospective Analysis for Research and Applications 2 (MERRA-2) reanalysis were used to drive an improved version of the land component of MERRA-2 in middle-to-high northern latitudes from 1980 to 2017. The resulting simulated permafrost distribution across the Northern Hemisphere mostly captures the observed extent of continuous and discontinuous permafrost but misses the ecosystem-protected permafrost zones in western Siberia. Noticeable discrepancies also appear along the southern edge of the permafrost regions where sporadic and isolated permafrost types dominate. The evaluation of the simulated active layer thickness (ALT) against remote sensing retrievals and in situ measurements demonstrates reasonable skill except in Mongolia. The RMSE (bias) of climatological ALT is 1.22 m (−0.48 m) across all sites and 0.33 m (−0.04 m) without the Mongolia sites. In northern Alaska, both ALT retrievals from airborne remote sensing for 2015 and the corresponding simulated ALT exhibit limited skill versus in situ measurements at the model scale. In addition, the simulated ALT has larger spatial variability than the remotely sensed ALT, although it agrees well with the retrievals when considering measurement uncertainty. Controls on the spatial variability of ALT are examined with idealized numerical experiments focusing on northern Alaska; meteorological forcing and soil types are found to have dominant impacts on the spatial variability of ALT, with vegetation also playing a role through its modulation of snow accumulation. A correlation analysis further reveals that accumulated above-freezing air temperature and maximum snow water equivalent explain most of the year-to-year variability of ALT nearly everywhere over the model-simulated permafrost regions.


2019 ◽  
Author(s):  
Edward H. Bair ◽  
Karl Rittger ◽  
Jawairia A. Ahmad ◽  
Doug Chabot

Abstract. Ice and snowmelt feed the Indus and Amu Darya rivers, yet there are limited in situ measurements of these resources. Previous work in the region has shown promise using snow water equivalent (SWE) reconstruction, which requires no in situ measurements, but validation has been a problem until recently when we were provided with daily manual snow depth measurements from Afghanistan, Tajikistan, and Pakistan by the Aga Khan Agency for Habitat (AKAH). For each station, accumulated precipitation and SWE were derived from snow depth using the SNOWPACK model. High-resolution (500 m) reconstructed SWE estimates from the ParBal model were then compared to the modeled SWE at the stations. The Alpine3D model was then used to create spatial estimates at 25 km to compare with estimates from other snow models. Additionally, the coupled SNOWPACK and Alpine3D system has the advantage of simulating snow profiles, which provide stability information. Following previous work, the median number of critical layers and percentage of facets across all of the pixels containing the AKAH stations was computed. For SWE at the point scale, the reconstructed estimates showed a bias of −42 mm (−19 %) at the peak. For the coarser spatial SWE estimates, the various models showed a wide range, with reconstruction being on the lower end. For stratigraphy, a heavily faceted snowpack is observed in both years, but 2018, a dry year, according to most of the models, showed more critical layers that persisted for a longer period.


2015 ◽  
Vol 28 (20) ◽  
pp. 8037-8051 ◽  
Author(s):  
L. R. Mudryk ◽  
C. Derksen ◽  
P. J. Kushner ◽  
R. Brown

Abstract Five, daily, gridded, Northern Hemisphere snow water equivalent (SWE) datasets are analyzed over the 1981–2010 period in order to quantify the spatial and temporal consistency of satellite retrievals, land surface assimilation systems, physical snow models, and reanalyses. While the climatologies of total Northern Hemisphere snow water mass (SWM) vary among the datasets by as much as 50%, their interannual variability and daily anomalies are comparable, showing moderate to good temporal correlations (between 0.60 and 0.85) on both interannual and intraseasonal time scales. Wintertime trends of total Northern Hemisphere SWM are consistently negative over the 1981–2010 period among the five datasets but vary in strength by a factor of 2–3. Examining spatial patterns of SWE indicates that the datasets are most consistent with one another over boreal forest regions compared to Arctic and alpine regions. Additionally, the datasets derived using relatively recent reanalyses are strongly correlated with one another and show better correlations with the satellite product [the European Space Agency (ESA)’s Global Snow Monitoring for Climate Research (GlobSnow)] than do those using older reanalyses. Finally, a comparison of eight reanalysis datasets over the 2001–10 period shows that land surface model differences control the majority of spread in the climatological value of SWM, while meteorological forcing differences control the majority of the spread in temporal correlations of SWM anomalies.


2016 ◽  
Vol 64 (4) ◽  
pp. 316-328 ◽  
Author(s):  
Pavel Krajčí ◽  
Michal Danko ◽  
Jozef Hlavčo ◽  
Zdeněk Kostka ◽  
Ladislav Holko

AbstractSnow accumulation and melt are highly variable. Therefore, correct modeling of spatial variability of the snowmelt, timing and magnitude of catchment runoff still represents a challenge in mountain catchments for flood forecasting. The article presents the setup and results of detailed field measurements of snow related characteristics in a mountain microcatchment (area 59 000 m2, mean altitude 1509 m a. s. l.) in the Western Tatra Mountains, Slovakia obtained in winter 2015. Snow water equivalent (SWE) measurements at 27 points documented a very large spatial variability through the entire winter. For instance, range of the SWE values exceeded 500 mm at the end of the accumulation period (March 2015). Simple snow lysimeters indicated that variability of snowmelt and discharge measured at the catchment outlet corresponded well with the rise of air temperature above 0°C. Temperature measurements at soil surface were used to identify the snow cover duration at particular points. Snow melt duration was related to spatial distribution of snow cover and spatial patterns of snow radiation. Obtained data together with standard climatic data (precipitation and air temperature) were used to calibrate and validate the spatially distributed hydrological model MIKE-SHE. The spatial redistribution of input precipitation seems to be important for modeling even on such a small scale. Acceptable simulation of snow water equivalents and snow duration does not guarantee correct simulation of peakflow at short-time (hourly) scale required for example in flood forecasting. Temporal variability of the stream discharge during the snowmelt period was simulated correctly, but the simulated discharge was overestimated.


2012 ◽  
Vol 35 (2) ◽  
pp. 95-116 ◽  
Author(s):  
Dmitry A. Streletskiy ◽  
Nikolay I. Shiklomanov ◽  
Frederick E. Nelson

2006 ◽  
Vol 7 (6) ◽  
pp. 1259-1276 ◽  
Author(s):  
Glen E. Liston ◽  
Kelly Elder

Abstract SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. Since each of these submodels was originally developed and tested for nonforested conditions, details describing modifications made to the submodels for forested areas are provided. SnowModel was created to run on grid increments of 1 to 200 m and temporal increments of 10 min to 1 day. It can also be applied using much larger grid increments, if the inherent loss in high-resolution (subgrid) information is acceptable. Simulated processes include snow accumulation; blowing-snow redistribution and sublimation; forest canopy interception, unloading, and sublimation; snow-density evolution; and snowpack melt. Conceptually, SnowModel includes the first-order physics required to simulate snow evolution within each of the global snow classes (i.e., ice, tundra, taiga, alpine/mountain, prairie, maritime, and ephemeral). The required model inputs are 1) temporally varying fields of precipitation, wind speed and direction, air temperature, and relative humidity obtained from meteorological stations and/or an atmospheric model located within or near the simulation domain; and 2) spatially distributed fields of topography and vegetation type. SnowModel’s ability to simulate seasonal snow evolution was compared against observations in both forested and nonforested landscapes. The model closely reproduced observed snow-water-equivalent distribution, time evolution, and interannual variability patterns.


2008 ◽  
Vol 9 (5) ◽  
pp. 957-976 ◽  
Author(s):  
Glen E. Liston ◽  
Christopher A. Hiemstra ◽  
Kelly Elder ◽  
Donald W. Cline

Abstract The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can distribute meteorological forcings, simulate snowpack accumulation and ablation processes, and assimilate snow-related observations. A SnowModel was developed and used to simulate winter snow accumulation across three 30 km × 30 km domains, enveloping the CLPX mesocell study areas (MSAs) in Colorado. The three MSAs have distinct topography, vegetation, meteorological, and snow characteristics. Simulations were performed using a 30-m grid increment and spanned the snow accumulation season (1 October 2002–1 April 2003). Meteorological forcing was provided by 27 meteorological stations and 75 atmospheric analyses grid points, distributed using a meteorological model (MicroMet). The simulations included a data assimilation model (SnowAssim) that adjusted simulated snow water equivalent (SWE) toward ground-based and airborne SWE observations. The observations consisted of SWE over three 1 km × 1 km intensive study areas (ISAs) for each MSA and a collection of 117 airborne gamma observations, each integrating area 10 km long by 300 m wide. Simulated SWE distributions displayed considerably more spatial heterogeneity than the observations alone, and the simulated distribution patterns closely fit the current understanding of snow evolution processes and observed snow depths. This is the result of the MicroMet/SnowModel’s relatively finescale representations of orographic precipitation, elevation-dependant snowmelt, wind redistribution, and snow–vegetation interactions.


2018 ◽  
Author(s):  
Daniel Price ◽  
Iman Soltanzadeh ◽  
Wolfgang Rack

Abstract. Knowledge of the snow depth distribution on Antarctic sea ice is poor but is critical to obtaining sea ice thickness from satellite altimetry measurements of freeboard. We examine the usefulness of various snow products to provide snow depth information over Antarctic fast ice with a focus on a novel approach using a high-resolution numerical snow accumulation model (SnowModel). We compare this model to results from ECMWF ERA-Interim precipitation, EOS Aqua AMSR-E passive microwave snow depths and in situ measurements at the end of the sea ice growth season. The fast ice was segmented into three areas by fastening date and the onset of snow accumulation was calibrated to these dates. SnowModel falls within 0.02 m snow water equivalent (swe) of in situ measurements across the entire study area, but exhibits deviations of 0.05 m swe from these measurements in the east where large topographic features appear to have caused a positive bias in snow depth. AMSR-E provides swe values half that of SnowModel for the majority of the sea ice growth season. The coarser resolution ERA-Interim, not segmented for sea ice freeze up area reveals a mean swe value 0.01 m higher than in situ measurements. These various snow datasets and in situ information are used to infer sea ice thickness in combination with CryoSat-2 (CS-2) freeboard data. CS-2 is capable of capturing the seasonal trend of sea ice freeboard growth but thickness results are highly dependent on the assumptions involved in separating snow and ice freeboard. With various assumptions about the radar penetration into the snow cover, the sea ice thickness estimates vary by up to 2 m. However, we find the best agreement between CS-2 derived and in situ thickness when a radar penetration of 0.05-0.10 m into the snow cover is assumed.


2018 ◽  
Author(s):  
Bin Cao ◽  
Tingjun Zhang ◽  
Qinghai Wu ◽  
Yu Sheng ◽  
Lin Zhao ◽  
...  

Abstract. Many maps have been produced to estimate permafrost distribution over the Qinghai-Tibet Plateau, however, the evaluation and comparisons of them are poorly understood due to limited evidence. Using a large number data from various sources, we present the inventory of permafrost presence/absence with 1475 sites/plots over the QTP. Based on the in-situ measurements, our evaluation results showed a wide range of map performance with the overall accuracy of about 59–82 %, and the estimated permafrost region (1.42–1.84 × 106 km2) and area (0.76–1.25 × 106 km2) are extremely large. The low agreement in areas near permafrost boundary and fragile landscapes require improved method considering more controlling factors at both medium-large and local scales.


2020 ◽  
Vol 14 (1) ◽  
pp. 331-347
Author(s):  
Edward H. Bair ◽  
Karl Rittger ◽  
Jawairia A. Ahmad ◽  
Doug Chabot

Abstract. Ice and snowmelt feed the Indus River and Amu Darya in western High Mountain Asia, yet there are limited in situ measurements of these resources. Previous work in the region has shown promise using snow water equivalent (SWE) reconstruction, which requires no in situ measurements, but validation has been a problem. However, recently we were provided with daily manual snow depth measurements from Afghanistan, Tajikistan, and Pakistan by the Aga Khan Agency for Habitat (AKAH). To validate SWE reconstruction, at each station, accumulated precipitation and SWE were derived from snow depth using the numerical snow cover model SNOWPACK. High-resolution (500 m) reconstructed SWE estimates from the Parallel Energy Balance Model (ParBal) were then compared to the modeled SWE at the stations. The Alpine3D model was then used to create spatial estimates at 25 km resolution to compare with estimates from other snow models. Additionally, the coupled SNOWPACK and Alpine3D system has the advantage of simulating snow profiles, which provides stability information. The median number of critical layers and percentage of faceted layers across all of the pixels containing the AKAH stations were computed. For SWE at the point scale, the reconstructed estimates showed a bias of −42 mm (−19 %) at peak SWE. For the coarser spatial SWE estimates, the various models showed a wide range, with reconstruction being on the lower end. A heavily faceted snowpack was observed in both years, but 2018, a dry year, according to most of the models, showed more critical layers that persisted for a longer period.


Sign in / Sign up

Export Citation Format

Share Document