scholarly journals Chronostratigraphy of blue ice at the Larsen Glacier in Northern Victoria Land, East Antarctica

2021 ◽  
Author(s):  
Giyoon Lee ◽  
Jinho Ahn ◽  
Hyeontae Ju ◽  
Florian Ritterbusch ◽  
Ikumi Oyabu ◽  
...  

Abstract. Blue ice areas (BIAs) allow for the collection of large-sized old ice samples in a cost-effective way because deep ice outcrops and make old ice samples available close to the surface. However, most chronostratigraphy studies on blue ice are complicated due to fold and fault structures. Here, we report a simple stratigraphy of ice from the Larsen BIA, Antarctica, making the area valuable for paleoclimate studies. Ice layers defined by dust bands and ground penetration radar (GPR) surveys indicate a monotonic increase in age along the ice flow direction on the downstream side, while the upstream ice exhibits a potential repetition of ages on scales of tens of meters, as shown in the complicated fold structure. Stable water isotopes (δ18Oice and δ2Hice) and components of the occluded air (i.e., CO2, N2O, CH4, δ15N-N2, δ18Oatm (= δ18O-O2), δO2/N2, δAr/N2, 81Kr and 85Kr) were analyzed for surface ice and shallow ice core samples. Correlating δ18Oice, δ18Oatm, and CH4 records of Larsen ice with existing ice core records indicates that the gas age at shallow coring sites ranges between 9.2–23.4 ka BP and ice age for entire surface sampling sites between 5.6–24.7 ka BP. Absolute radiometric 81Kr dating for the two cores confirms the ages within acceptable levels of analytical uncertainty. Our study demonstrates that BIA in northern Victoria Land may help researchers obtain high-quality records for paleoclimate and atmospheric greenhouse gas compositions through the last deglaciation.

2007 ◽  
Vol 3 (3) ◽  
pp. 527-540 ◽  
Author(s):  
L. Loulergue ◽  
F. Parrenin ◽  
T. Blunier ◽  
J.-M. Barnola ◽  
R. Spahni ◽  
...  

Abstract. Gas is trapped in polar ice sheets at ~50–120 m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (Δage) in the past. However, such models need to be validated by data, in particular for periods colder than present day on the East Antarctic plateau. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC) site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML) ice core, both in the ice phase (using volcanic horizons) and in the gas phase (using rapid methane variations). We also use the structured 10Be peak, occurring 41 kyr before present (BP) and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the Δage during this event. Our results seem to reveal an overestimate of the Δage by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Although the exact reasons for the Δage overestimate at the two EPICA sites remain unknown at this stage, we conclude that current densification model simulations have deficits under glacial climatic conditions. Whatever the cause of the Δage overestimate, our finding suggests that the phase relationship between CO2 and EDC temperature previously inferred for the start of the last deglaciation (lag of CO2 by 800±600 yr) seems to be overestimated.


2018 ◽  
Vol 14 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Pascal Bohleber ◽  
Tobias Erhardt ◽  
Nicole Spaulding ◽  
Helene Hoffmann ◽  
Hubertus Fischer ◽  
...  

Abstract. Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a “Little Ice Age” cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100–1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.


2020 ◽  
Vol 16 (5) ◽  
pp. 1691-1713 ◽  
Author(s):  
James E. Lee ◽  
Edward J. Brook ◽  
Nancy A. N. Bertler ◽  
Christo Buizert ◽  
Troy Baisden ◽  
...  

Abstract. In 2013 an ice core was recovered from Roosevelt Island, an ice dome between two submarine troughs carved by paleo-ice-streams in the Ross Sea, Antarctica. The ice core is part of the Roosevelt Island Climate Evolution (RICE) project and provides new information about the past configuration of the West Antarctic Ice Sheet (WAIS) and its retreat during the last deglaciation. In this work we present the RICE17 chronology, which establishes the depth–age relationship for the top 754 m of the 763 m core. RICE17 is a composite chronology combining annual layer interpretations for 0–343 m (Winstrup et al., 2019) with new estimates for gas and ice ages based on synchronization of CH4 and δ18Oatm records to corresponding records from the WAIS Divide ice core and by modeling of the gas age–ice age difference. Novel aspects of this work include the following: (1) an automated algorithm for multiproxy stratigraphic synchronization of high-resolution gas records; (2) synchronization using centennial-scale variations in methane for pre-anthropogenic time periods (60–720 m, 1971 CE to 30 ka), a strategy applicable for future ice cores; and (3) the observation of a continuous climate record back to ∼65 ka providing evidence that the Roosevelt Island Ice Dome was a constant feature throughout the last glacial period.


2007 ◽  
Vol 3 (2) ◽  
pp. 435-467 ◽  
Author(s):  
L. Loulergue ◽  
F. Parrenin ◽  
T. Blunier ◽  
J.-M. Barnola ◽  
R. Spahni ◽  
...  

Abstract. Gas is trapped in polar ice sheets at ~50–120 m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (Δage) in the past. However, such models are not well tested on low accumulation and cold sites of the East Antarctic plateau, especially for periods with different climatic conditions. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC) site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML) ice core, both in the ice phase (using volcanic horizons) and in the gas phase (using rapid methane variations). We use the structured 10Be peak, occurring 41 kyr before present (BP) and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the Δage and Δdepth during this event. It allows us to evaluate the model and to link together climatic archives from EDC and EDML to NorthGRIP (Greenland). Our results reveal an overestimate of the Δage by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Our finding suggests that the phase relationship between CO2 and EDC temperature inferred at the start of the last deglaciation (lag of CO2 by 800±600 yr) is overestimated and that the CO2 increase could well have been in phase or slightly leading the temperature increase at EDC.


2014 ◽  
Vol 26 (6) ◽  
pp. 674-686 ◽  
Author(s):  
C.J. Fogwill ◽  
C.S.M. Turney ◽  
N.R. Golledge ◽  
D.H. Rood ◽  
K. Hippe ◽  
...  

AbstractDetermining the millennial-scale behaviour of marine-based sectors of the West Antarctic Ice Sheet (WAIS) is critical to improve predictions of the future contribution of Antarctica to sea level rise. Here high-resolution ice sheet modelling was combined with new terrestrial geological constraints (in situ14C and 10Be analysis) to reconstruct the evolution of two major ice streams entering the Weddell Sea over 20 000 years. The results demonstrate how marked differences in ice flux at the marine margin of the expanded Antarctic ice sheet led to a major reorganization of ice streams in the Weddell Sea during the last deglaciation, resulting in the eastward migration of the Institute Ice Stream, triggering a significant regional change in ice sheet mass balance during the early to mid Holocene. The findings highlight how spatial variability in ice flow can cause marked changes in the pattern, flux and flow direction of ice streams on millennial timescales in this marine ice sheet setting. Given that this sector of the WAIS is assumed to be sensitive to ocean-forced instability and may be influenced by predicted twenty-first century ocean warming, our ability to model and predict abrupt and extensive ice stream diversions is key to a realistic assessment of future ice sheet sensitivity.


2004 ◽  
Vol 39 ◽  
pp. 495-500 ◽  
Author(s):  
Mauro Guglielmin ◽  
Hugh M. French

AbstractThis progress report classifies the different types of ground-ice bodies that occur in the Northern Foothills, northern Victoria Land, Antarctica. Oxygen isotope variations are presented, but interpretation is kept to a minimum pending further investigations. Surface ice, as distinct from moving glacier ice, occurs in the form of widespread buried (‘dead’) glacier ice lying beneath ablation (sublimation) till, together with perennial lake ice, snow banks and icing-blister ice.’Dry’ permafrost is uncommon, and interstitial ice is usually present at the base of the active layer and in the near-surface permafrost. This probably reflects the supply of moisture from the Ross Sea and limited sublimation under today’s climate. Intrusive ice occurs as layers within perennial lake-ice covers and gives rise to small icing blisters. Small ice wedges found beneath the furrows of high-centered polygons appear to agree with the model of sublimation-till development proposed by Marchant and others (2002).


2005 ◽  
Vol 64 (2) ◽  
pp. 272-278 ◽  
Author(s):  
Kam-biu Liu ◽  
Carl A. Reese ◽  
Lonnie G. Thompson

AbstractThis paper presents a high-resolution ice-core pollen record from the Sajama Ice Cap, Bolivia, that spans the last 400 yr. The pollen record corroborates the oxygen isotopic and ice accumulation records from the Quelccaya Ice Cap and supports the scenario that the Little Ice Age (LIA) consisted of two distinct phases�"a wet period from AD 1500 to 1700, and a dry period from AD 1700 to 1880. During the dry period xerophytic shrubs expanded to replace puna grasses on the Altiplano, as suggested by a dramatic drop in the Poaceae/Asteraceae (P/A) pollen ratio. The environment around Sajama was probably similar to the desert-like shrublands of the Southern Bolivian Highlands and western Andean slopes today. The striking similarity between the Sajama and Quelccaya proxy records suggests that climatic changes during the Little Ice Age occurred synchronously across the Altiplano.


2003 ◽  
Vol 59 (1) ◽  
pp. 114-121 ◽  
Author(s):  
Martin J. Siegert ◽  
Richard C. A. Hindmarsh ◽  
Gordon S. Hamilton

AbstractInternal isochronous ice sheet layers, recorded by airborne ice-penetrating radar, were measured along an ice flowline across a large (>1 km high) subglacial hill in the foreground of the Transantarctic Mountains. The layers, dated through an existing stratigraphic link with the Vostok ice core, converge with the ice surface as ice flows over the hill without noticeable change to their separation with each other or the ice base. A two-dimensional ice flow model that calculates isochrons and particle flowpaths and accounts for ice flow over the hill under steady-state conditions requires net ablation (via sublimation) over the stoss face for the predicted isochrons to match the measured internal layers. Satellite remote sensing data show no sign of exposed ancient ice at this site, however. Given the lack of exposed glacial ice, surface balance conditions must have changed recently from the net ablation that is predicted at this site for the last 85,000 years to accumulation.


2021 ◽  
Vol 34 (10) ◽  
pp. 3839-3852
Author(s):  
Stacy E. Porter ◽  
Ellen Mosley-Thompson ◽  
Lonnie G. Thompson ◽  
Aaron B. Wilson

AbstractUsing an assemblage of four ice cores collected around the Pacific basin, one of the first basinwide histories of Pacific climate variability has been created. This ice core–derived index of the interdecadal Pacific oscillation (IPO) incorporates ice core records from South America, the Himalayas, the Antarctic Peninsula, and northwestern North America. The reconstructed IPO is annually resolved and dates to 1450 CE. The IPO index compares well with observations during the instrumental period and with paleo-proxy assimilated datasets throughout the entire record, which indicates a robust and temporally stationary IPO signal for the last ~550 years. Paleoclimate reconstructions from the tropical Pacific region vary greatly during the Little Ice Age (LIA), although the reconstructed IPO index in this study suggests that the LIA was primarily defined by a weak, negative IPO phase and hence more La Niña–like conditions. Although the mean state of the tropical Pacific Ocean during the LIA remains uncertain, the reconstructed IPO reveals some interesting dynamical relationships with the intertropical convergence zone (ITCZ). In the current warm period, a positive (negative) IPO coincides with an expansion (contraction) of the seasonal latitudinal range of the ITCZ. This relationship is not stationary, however, and is virtually absent throughout the LIA, suggesting that external forcing, such as that from volcanoes and/or reduced solar irradiance, could be driving either the ITCZ shifts or the climate dominating the ice core sites used in the IPO reconstruction.


1990 ◽  
Vol 14 ◽  
pp. 199-204 ◽  
Author(s):  
Ellen Mosley-Thompson ◽  
Lonnie G. Thompson ◽  
Pieter M. Grootes ◽  
N. Gundestrup

The 550-year records of δ18O and dust concentrations from Siple Station, Antarctica suggest warmer and less dusty atmospheric conditions from 1600 to 1830 A.D. which encompasses much of the northern hemisphere Little Ice Age (LIA). Dust and δ18O data from South Pole Station indicate that the opposite conditions (e.g. cooler and more dusty) were prevalent there during the LIA. Meteorological data from 1945–85 show that the LIA temperature opposition between Amundsen-Scott and Siple, inferred from δ18O, is consistent with the present spatial distribution of surface temperature. There is some observational evidence suggesting that under present conditions stronger zonal westerlies produce a temperature pattern similar to that of the LIA. These regional differences demonstrate that a suite of spatially distributed, high resolution ice-core records will be necessary to characterize the LIA in Antarctica


Sign in / Sign up

Export Citation Format

Share Document