scholarly journals The Northeast Asia mountain glaciers in the near future by AOGCM scenarios

2010 ◽  
Vol 4 (2) ◽  
pp. 707-735
Author(s):  
M. D. Ananicheva ◽  
A. N. Krenke ◽  
R. G. Barry

Abstract. We studied contrasting glacier systems in continental (Orulgan, Suntar-Khayata and Chersky ranges located in the Pole of Cold of Eurasia area at the contact of Atlantic and Pacific influences and maritime (Kamchatka Peninsula) – under Pacific influence. Our purpose is to present a simple projection method to asses the main parameters of these glacier regions under climate change. To achieve this, constructed vertical profiles of mass balance (accumulation and ablation) based both on meteorological data for 1950–90s and ECHAM4 for 2040–2069 are used, the latter – as a climatic scenario. Also for selected key glacier systems other models were applied for comparison. The observations and scenarios were used to define the recent and future equilibrium line altitude (ELA) and glacier termini elevation for each glacier system. The altitudinal distributions of ice areas were determined for present and future, they were used for prediction of the elevation spreading of glaciers in the system taking into account the correlation between the ELA and glacier-termini level change. We tested two hypotheses of ice distribution versus altitude in mountain (valley) glaciers – linear and non-linear. The results are estimates of the possible changes of the areas and morphological structure of Northeastern Asia glacier systems and their mass balance characteristics for 2049–60. Finally, we compare characteristics of the stability of continental and maritime glacier systems under global warming.

2010 ◽  
Vol 4 (4) ◽  
pp. 435-445 ◽  
Author(s):  
M. D. Ananicheva ◽  
A. N. Krenke ◽  
R. G. Barry

Abstract. We studied contrasting glacier systems in continental (Orulgan, Suntar-Khayata and Chersky) mountain ranges, located in the region of the lowest temperatures in the Northern Hemisphere at the boundary of Atlantic and Pacific influences – and maritime ones (Kamchatka Peninsula) – under Pacific influence. Our purpose is to present a simple projection method to assess the main parameters of these glacier regions under climate change. To achieve this, constructed vertical profiles of mass balance (accumulation and ablation) based both on meteorological data for the 1950–1990s (baseline period) and ECHAM4 for 2049–2060 (projected period) are used, the latter – as a climatic scenario. The observations and scenarios were used to define the recent and future equilibrium line altitude and glacier terminus altitude level for each glacier system as well as areas and balance components. The altitudinal distributions of ice areas were determined for present and future, and they were used for prediction of glacier extent versus altitude in the system taking into account the correlation between the ELA and glacier-terminus level change. We tested two hypotheses of ice distribution versus altitude in mountain (valley) glaciers – "linear" and "non-linear". The results are estimates of the possible changes of the areas and morphological structure of northeastern Asia glacier systems and their mass balance characteristics for 2049–2060. Glaciers in the southern parts of northeastern Siberia and those covering small ranges in Kamchatka will likely disappear under the ECHAM4 scenario; the best preservation of glaciers will be on the highest volcanic peaks of Kamchatka. Finally, we compare characteristics of the stability of continental and maritime glacier systems under global warming.


2008 ◽  
Vol 2 (1) ◽  
pp. 1-21 ◽  
Author(s):  
M. D. Ananicheva ◽  
A. N. Krenke ◽  
E. Hanna

Abstract. In this study we consider contrasting continental (Orulgan, Suntar-Khayata and Chersky ranges located in the Pole of Cold area at the contact of Atlantic and Pacific influences) and maritime (Kamchatka under the Pacific influence) Russian glacier systems. Our purpose is to present a simple method for the projection of change of the main parameters of these glacier systems with climate change. To achieve this aim, we constructed vertical profiles of mass balance (accumulation and ablation) based both on meteorological observations for the mid to late 20th century and an ECHAM4 GCM scenario for 2040–2069. The observations and scenario were used for defining the recent and future equilibrium line altitude (ELA) for each glacier system. The altitudinal distributions of the areas covered with glacier ice were determined for present and future states of the glacier systems, taking into account the correlation of the change of the ELA and glacier-termini levels. We also give estimates of the possible changes of the areas and morphological structure of North-eastern Asia glacier systems and their mass balance characteristics from the ECHAM4 scenario. Finally, we compare characteristics of the continental and maritime glacier systems stability under conditions of global warming.


1988 ◽  
Vol 34 (116) ◽  
pp. 11-18 ◽  
Author(s):  
Anne Letréguilly

AbstractThe mass balance, summer balance, winter balance, and equilibrium-line altitude of three Canadian glaciers (Peyto, Place, and Sentinel Glaciers) are compared with the meteorological records of neighbouring stations for the period 1966—84. While Peyto Glacier’s mass balance is almost entirely related to summer temperature, Sentinel Glacier’s mass balance is mostly controlled by winter precipitation. Place Glacier is influenced by both elements. Statistical reconstructions are presented for the three glaciers, using the best regression equations with the meteorological records since 1938.


1988 ◽  
Vol 34 (116) ◽  
pp. 11-18 ◽  
Author(s):  
Anne Letréguilly

AbstractThe mass balance, summer balance, winter balance, and equilibrium-line altitude of three Canadian glaciers (Peyto, Place, and Sentinel Glaciers) are compared with the meteorological records of neighbouring stations for the period 1966—84. While Peyto Glacier’s mass balance is almost entirely related to summer temperature, Sentinel Glacier’s mass balance is mostly controlled by winter precipitation. Place Glacier is influenced by both elements. Statistical reconstructions are presented for the three glaciers, using the best regression equations with the meteorological records since 1938.


2008 ◽  
Vol 54 (184) ◽  
pp. 125-130 ◽  
Author(s):  
Satoru Yamaguchi ◽  
Renji Naruse ◽  
Takayuki Shiraiwa

AbstractBased on the field data at Koryto glacier, Kamchatka Peninsula, Russia, we constructed a one-dimensional numerical glacier model which fits the behaviour of the glacier. The analysis of meteorological data from the nearby station suggests that the recent rapid retreat of the glacier since the mid-20th century is likely to be due to a decrease in winter precipitation. Using the geographical data of the glacier terminus variations from 1711 to 1930, we reconstructed the fluctuation in the equilibrium-line altitude by means of the glacier model. With summer temperatures inferred from tree-ring data, the model suggests that the winter precipitation from the mid-19th to the early 20th century was about 10% less than that at present. This trend is close to consistent with ice-core results from the nearby ice cap in the central Kamchatka Peninsula.


2016 ◽  
Vol 57 (71) ◽  
pp. 223-231 ◽  
Author(s):  
Liyun Zhao ◽  
Ran Ding ◽  
John C. Moore

AbstractWe estimate all the individual glacier area and volume changes in High Mountain Asia (HMA) by 2050 based on Randolph Glacier Inventory (RGI) version 4.0, using different methods of assessing sensitivity to summer temperatures driven by a regional climate model and the IPCC A1B radiative forcing scenario. A large range of sea-level rise variation comes from varying equilibrium-line altitude (ELA) sensitivity to summer temperatures. This sensitivity and also the glacier mass-balance gradients with elevation have the largest coefficients of variability (amounting to ~50%) among factors examined. Prescribing ELA sensitivities from energy-balance models produces the highest sea-level rise (9.2 mm, or 0.76% of glacier volume a–1), while the ELA sensitivities estimated from summer temperatures at Chinese meteorological stations and also from 1°x1° gridded temperatures in the Berkeley Earth database produce 3.6 and 3.8 mm, respectively. Different choices of the initial ELA or summer precipitation lead to 15% uncertainties in modelled glacier volume loss. RGI version 4.0 produces 20% lower sea-level rise than version 2.0. More surface mass-balance observations, meteorological data from the glaciated areas, and detailed satellite altimetry data can provide better estimates of sea-level rise in the future.


2012 ◽  
Vol 6 (3) ◽  
pp. 2115-2160
Author(s):  
E. Thibert ◽  
N. Eckert ◽  
C. Vincent

Abstract. Refined temporal signals are extracted from a glacier winter and summer mass balance series recorded at Glacier de Sarennes (French Alps) using variance decomposition. They are related to local and synoptic meteorological data in terms of interannual variability and structured trends. The winter balance has increased by +23% since 1976 due to more precipitation in early and late winter. The summer balance has decreased since 1982 due to a 43% increase in snow and ice melt. A 24-day lengthening of the ablation period – mainly due to longer ice ablation – is the main component in the overall increase in ablation. In addition, the last 25 yr have seen increases in ablation rates of 14 and 10% for snow and ice respectively. A simple degree-day analysis can account for both the snow/ice melt rate rise and the lengthening of the ablation period as a function of higher air temperatures. From the same analysis, the equilibrium line altitude of this 45° North latitude south-facing glacier has sensitivity to temperature of +93 m °C−1 around its mean elevation of 3100 m a.s.l. over 6 decades. The sensitivity of summer balance to temperature is −0.62 m w.e. yr−1 °C−1 for a typical 125-day long ablation season. Finally, the time structure of winter and summer mass balance terms are connected to NAO anomalies. Best correlations are obtained with winter NAO anomalies. However, they strongly depend on how the NAO signal is smoothed, so that the link between mass-balance seasonal terms and NAO signal remains tenuous and hard to interpret.


2013 ◽  
Vol 7 (1) ◽  
pp. 47-66 ◽  
Author(s):  
E. Thibert ◽  
N. Eckert ◽  
C. Vincent

Abstract. Refined temporal signals extracted from a winter and summer mass balance series recorded at Glacier de Sarennes (French Alps) using variance decomposition are related to local meteorological data and large-scale North Atlantic Oscillation (NAO) anomalies in terms of interannual variability, trends of the low-frequency signals, and breaks in the time series. The winter balance has increased by +23% since 1976 due to more precipitation in early and late winter. The summer balance has decreased since 1982 due to a 43% increase in snow and ice melt. A 24-day lengthening of the ablation period – mainly due to longer ice ablation – is the main component in the overall increase in ablation. In addition, the last 25 yr have seen increases in ablation rates of 14 and 10% for snow and ice, respectively. A simple degree-day analysis can account for both the snow/ice melt rate rise and the lengthening of the ablation period as a function of higher air temperatures. From the same analysis, the equilibrium-line altitude of this 45° N latitude south-facing glacier has a sensitivity to temperature of +93 m °C−1 around its mean elevation of 3100 m a.s.l. over 6 decades. The sensitivity of summer balance to temperature is −0.62 m w.e. yr−1 °C−1 for a typical 125-day-long ablation season. Finally, the correlation of winter and summer mass balance terms with NAO anomalies is investigated. Singularly, highest values are obtained between winter NAO anomalies and summer balance. Winter NAO anomalies and winter balance and precipitation are almost disconnected. However, these results strongly depend on how the NAO signal is smoothed, so that the link between Sarennes mass balance seasonal terms and NAO signal remains tenuous and hard to interpret.


2012 ◽  
Vol 6 (3) ◽  
pp. 641-659 ◽  
Author(s):  
W. J. J. van Pelt ◽  
J. Oerlemans ◽  
C. H. Reijmer ◽  
V. A. Pohjola ◽  
R. Pettersson ◽  
...  

Abstract. A distributed energy balance model is coupled to a multi-layer snow model in order to study the mass balance evolution and the impact of refreezing on the mass budget of Nordenskiöldbreen, Svalbard. The model is forced with output from the regional climate model RACMO and meteorological data from Svalbard Airport. Extensive calibration and initialisation are performed to increase the model accuracy. For the period 1989–2010, we find a mean net mass balance of −0.39 m w.e. a−1. Refreezing contributes on average 0.27 m w.e. a−1 to the mass budget and is most pronounced in the accumulation zone. The simulated mass balance, radiative fluxes and subsurface profiles are validated against observations and are generally in good agreement. Climate sensitivity experiments reveal a non-linear, seasonally dependent response of the mass balance, refreezing and runoff to changes in temperature and precipitation. It is shown that including seasonality in climate change, with less pronounced summer warming, reduces the sensitivity of the mass balance and equilibrium line altitude (ELA) estimates in a future climate. The amount of refreezing is shown to be rather insensitive to changes in climate.


2008 ◽  
Vol 54 (185) ◽  
pp. 307-314 ◽  
Author(s):  
Antoine Rabatel ◽  
Jean-Pierre Dedieu ◽  
Emmanuel Thibert ◽  
Anne Letréguilly ◽  
Christian Vincent

AbstractAnnual equilibrium-line altitude (ELA) and surface mass balance of Glacier Blanc, Ecrins region, French Alps, were reconstructed from a 25 year time series of satellite images (1981–2005). The remote-sensing method used was based on identification of the snowline, which is easy to discern on optical satellite images taken at the end of the ablation season. In addition, surface mass balances at the ELA were reconstructed for the same period using meteorological data from three nearby weather stations. A comparison of the two types of series reveals a correlation of r > 0.67 at the 0.01 level of significance. Furthermore, the surface mass balances obtained from remote-sensing data are consistent with those obtained from field measurements on five other French glaciers (r = 0.76, p < 0.01). Also consistent for Glacier Blanc is the total mass loss (10.8 m w.e.) over the studied period. However, the surface mass balances obtained with the remote-sensing method show lower interannual variability. Given that the remote-sensing method is based on changes in the ELA, this difference probably results from the lower sensitivity of the surface mass balance to climate parameters at the ELA.


Sign in / Sign up

Export Citation Format

Share Document