scholarly journals Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past temperature reconstructions

2015 ◽  
Vol 9 (1) ◽  
pp. 655-717 ◽  
Author(s):  
V. Masson-Delmotte ◽  
H. C. Steen-Larsen ◽  
P. Ortega ◽  
D. Swingedouw ◽  
T. Popp ◽  
...  

Abstract. Combined records of snow accumulation rate, δ18O and deuterium excess were produced from several shallow ice cores and snow pits at NEEM (north-west Greenland), covering the period from 1724 to 2007. They are used to investigate recent climate variability and characterize the isotope–temperature relationship. We find that NEEM records are only weakly affected by inter-annual changes in the North Atlantic Oscillation. Decadal δ18O and accumulation variability is related to North Atlantic SST, and enhanced at the beginning of the 19th century. No long-term trend is observed in the accumulation record. By contrast, NEEM δ18O shows multi-decadal increasing trends in the late 19th century and since the 1980s. The strongest annual positive δ18O anomaly values are recorded at NEEM in 1928 and 2010, while maximum accumulation occurs in 1933. The last decade is the most enriched in δ18O (warmest), while the 11-year periods with the strongest depletion (coldest) are depicted at NEEM in 1815–1825 and 1836–1846, which are also the driest 11-year periods. The NEEM accumulation and δ18O records are strongly correlated with outputs from atmospheric models, nudged to atmospheric reanalyses. Best performance is observed for ERA reanalyses. Gridded temperature reconstructions, instrumental data and model outputs at NEEM are used to estimate the multi-decadal accumulation–temperature and δ18O–temperature relationships for the strong warming period in 1979–2007. The accumulation sensitivity to temperature is estimated at 11 ± 2% °C−1 and the δ18O–temperature slope at 1.1 ± 0.2‰ °C−1, about twice larger than previously used to estimate last interglacial temperature change from the bottom part of the NEEM deep ice core.

2015 ◽  
Vol 9 (4) ◽  
pp. 1481-1504 ◽  
Author(s):  
V. Masson-Delmotte ◽  
H. C. Steen-Larsen ◽  
P. Ortega ◽  
D. Swingedouw ◽  
T. Popp ◽  
...  

Abstract. Combined records of snow accumulation rate, δ18O and deuterium excess were produced from several shallow ice cores and snow pits at NEEM (North Greenland Eemian Ice Drilling), covering the period from 1724 to 2007. They are used to investigate recent climate variability and characterise the isotope–temperature relationship. We find that NEEM records are only weakly affected by inter-annual changes in the North Atlantic Oscillation. Decadal δ18O and accumulation variability is related to North Atlantic sea surface temperature and is enhanced at the beginning of the 19th century. No long-term trend is observed in the accumulation record. By contrast, NEEM δ18O shows multidecadal increasing trends in the late 19th century and since the 1980s. The strongest annual positive δ18O values are recorded at NEEM in 1928 and 2010, while maximum accumulation occurs in 1933. The last decade is the most enriched in δ18O (warmest), while the 11-year periods with the strongest depletion (coldest) are depicted at NEEM in 1815–1825 and 1836–1846, which are also the driest 11-year periods. The NEEM accumulation and δ18O records are strongly correlated with outputs from atmospheric models, nudged to atmospheric reanalyses. Best performance is observed for ERA reanalyses. Gridded temperature reconstructions, instrumental data and model outputs at NEEM are used to estimate the multidecadal accumulation–temperature and δ18O–temperature relationships for the strong warming period in 1979–2007. The accumulation sensitivity to temperature is estimated at 11 ± 2 % °C−1 and the δ18O–temperature slope at 1.1 ± 0.2 ‰ °C−1, about twice as large as previously used to estimate last interglacial temperature change from the bottom part of the NEEM deep ice core.


1994 ◽  
Vol 20 ◽  
pp. 420-426 ◽  
Author(s):  
L. G. Thompson ◽  
D. A. Peel ◽  
E. Mosley-thompson ◽  
R. Mulvaney ◽  
J. Dal ◽  
...  

A 480 year record of the oxygen-isotope ratios, dust content, chemical species and net accumulation from ice cores drilled in 1989 90 on Dyer Plateau in the Antarctic Peninsula is presented. The continuous analyses of small (sub-annual) samples reveal well-preserved annual variations in both sulfate content and δ18O, thus allowing an excellent time-scale to be established.This history reveals a recent pronounced warming in which the last two decades have been among the warmest in the last five centuries. Furthermore, unlike in East Antarctica, on Dyer Plateau conditions appear to have been fairly normal from AD 1500 to 1850 with cooler conditions from 1850 to 1930 and a warming trend dominating since 1930. Reconstructed annual layer thicknesses suggest an increase in net accumulation beginning early in the 19th century and continuing to the present. This intuitive conflict between increasing net accumulation and depleted δ18O (cooler climate) in the 19th century appears widespread in the peninsula region and challenges our understanding of the physical relationships among moisture sources, air temperatures and snow accumulation. The complex meteorological regime in the Antarctic Peninsula region complicates meaningful interpretation of proxy indicators and results in a strong imprint of local high-frequency processes upon the larger-scale climate picture.


1994 ◽  
Vol 20 ◽  
pp. 420-426 ◽  
Author(s):  
L. G. Thompson ◽  
D. A. Peel ◽  
E. Mosley-thompson ◽  
R. Mulvaney ◽  
J. Dal ◽  
...  

A 480 year record of the oxygen-isotope ratios, dust content, chemical species and net accumulation from ice cores drilled in 1989 90 on Dyer Plateau in the Antarctic Peninsula is presented. The continuous analyses of small (sub-annual) samples reveal well-preserved annual variations in both sulfate content and δ18O, thus allowing an excellent time-scale to be established.This history reveals a recent pronounced warming in which the last two decades have been among the warmest in the last five centuries. Furthermore, unlike in East Antarctica, on Dyer Plateau conditions appear to have been fairly normal from AD 1500 to 1850 with cooler conditions from 1850 to 1930 and a warming trend dominating since 1930. Reconstructed annual layer thicknesses suggest an increase in net accumulation beginning early in the 19th century and continuing to the present. This intuitive conflict between increasing net accumulation and depleted δ18O (cooler climate) in the 19th century appears widespread in the peninsula region and challenges our understanding of the physical relationships among moisture sources, air temperatures and snow accumulation. The complex meteorological regime in the Antarctic Peninsula region complicates meaningful interpretation of proxy indicators and results in a strong imprint of local high-frequency processes upon the larger-scale climate picture.


2021 ◽  
Author(s):  
Pete D. Akers ◽  
Joël Savarino ◽  
Nicolas Caillon ◽  
Mark Curran ◽  
Tas Van Ommen

<p>Precise Antarctic snow accumulation estimates are needed to understand past and future changes in global sea levels, but standard reconstructions using water isotopes suffer from competing isotopic effects external to accumulation. We present here an alternative accumulation proxy based on the post-depositional photolytic fractionation of nitrogen isotopes (d<sup>15</sup>N) in nitrate. On the high plateau of East Antarctica, sunlight penetrating the uppermost snow layers converts snow-borne nitrate into nitrogen oxide gas that can be lost to the atmosphere. This nitrate loss favors <sup>14</sup>NO<sub>3</sub><sup>-</sup> over <sup>15</sup>NO<sub>3</sub><sup>-</sup>, and thus the d<sup>15</sup>N of nitrate remaining in the snow will steadily increase until the nitrate is eventually buried beneath the reach of light. Because the duration of time until burial is dependent upon the rate of net snow accumulation, sites with lower accumulation rates have a longer burial wait and thus higher d<sup>15</sup>N values. A linear relationship (r<sup>2</sup> = 0.86) between d<sup>15</sup>N and net accumulation<sup>-1</sup> is calculated from over 120 samples representing 105 sites spanning East Antarctica. These sites largely encompass the full range of snow accumulation rates observed in East Antarctica, from 25 kg m-<sup>2</sup> yr<sup>-1</sup> at deep interior sites to >400 kg m-<sup>2</sup> yr<sup>-1</sup> at near coastal sites. We apply this relationship as a transfer function to an Aurora Basin ice core to produce a 700-year record of accumulation changes. Our nitrate-based estimate compares very well with a parallel reconstruction for Aurora Basin that uses volcanic horizons and ice-penetrating radar. Continued improvements to our database may enable precise independent estimates of millennial-scale accumulation changes using deep ice cores such as EPICA Dome C and Beyond EPICA-Oldest Ice.</p>


2008 ◽  
Vol 4 (1) ◽  
pp. 47-57 ◽  
Author(s):  
A. Svensson ◽  
K. K. Andersen ◽  
M. Bigler ◽  
H. B. Clausen ◽  
D. Dahl-Jensen ◽  
...  

Abstract. The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 ka extension of the time scale such that GICC05 continuously covers the past 60 ka. The new section of the time scale places the onset of Greenland Interstadial 12 (GI-12) at 46.9±1.0 ka b2k (before year AD 2000), the North Atlantic Ash Zone II layer in GI-15 at 55.4±1.2 ka b2k, and the onset of GI-17 at 59.4±1.3 ka b2k. The error estimates are derived from the accumulated number of uncertain annual layers. In the 40–60 ka interval, the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 ka. Assuming that the Greenland climatic events are synchronous with those seen in the Chinese Hulu Cave speleothem record, GICC05 compares well to the time scale of that record with absolute age differences of less than 800 years throughout the 60 ka period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geomagnetic excursion, the French Villars Cave and the Austrian Kleegruben Cave speleothem records, suggesting high accuracy of both event durations and absolute age estimates.


2016 ◽  
Vol 62 (236) ◽  
pp. 1037-1048 ◽  
Author(s):  
F. PARRENIN ◽  
S. FUJITA ◽  
A. ABE-OUCHI ◽  
K. KAWAMURA ◽  
V. MASSON-DELMOTTE ◽  
...  

ABSTRACTDocumenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice-sheet contribution to global mean sea-level change. Here we reconstruct past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronization of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 a, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, being small during cold periods and large during warm periods. Our results therefore reveal larger amplitudes of changes in SMB at EDC compared with DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared with DF. Within the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 0.2 from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends.


2021 ◽  
Author(s):  
Yuzhen Yan ◽  
Nicole E. Spaulding ◽  
Michael L. Bender ◽  
Edward J. Brook ◽  
John A. Higgins ◽  
...  

Abstract. The S27 ice core, drilled in the Allan Hills Blue Ice Area of East Antarctica, is located in Southern Victoria Land ~80 km away from the present-day northern edge of the Ross Ice Shelf. Here, we utilize the reconstructed accumulation rate of S27 covering the Last Interglacial (LIG) period between 129 and 116 thousand years before present (ka) to infer moisture transport into the region. The accumulation rate is based on the ice age-gas age differences calculated from the ice chronology, which is constrained by the stable water isotopes of the ice, and an improved gas chronology based on measurements of oxygen isotopes of O2 in the trapped gases. The peak accumulation rate in S27 occurred at 128.2 ka, near the peak LIG warming in Antarctica. Even the most conservative estimate yields a six-fold increase in the accumulation rate in the LIG, whereas other Antarctic ice cores are typically characterized by a glacial-interglacial difference of a factor of two to three. While part of the increase in S27 accumulation rates must originate from changes in the large-scale atmospheric circulation, additional mechanisms are needed to explain the large changes. We hypothesize that the exceptionally high snow accumulation recorded in S27 reflects open-ocean conditions in the Ross Sea, created by reduced sea ice extent and increased polynya size, and perhaps by a southward retreat of the Ross Ice Shelf relative to its present-day position near the onset of LIG. The proposed ice shelf retreat would also be compatible with a sea-level high stand around 129 ka significantly sourced from West Antarctica. The peak in S27 accumulation rates is transient, suggesting that if the Ross Ice Shelf had indeed retreated during the early LIG, it would have re-advanced by 125 ka.


2006 ◽  
Vol 2 (2) ◽  
pp. 145-165 ◽  
Author(s):  
V. Masson-Delmotte ◽  
G. Dreyfus ◽  
P. Braconnot ◽  
S. Johnsen ◽  
J. Jouzel ◽  
...  

Abstract. Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP) and Antarctic (Dome C) ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core-based temperature reconstructions. In Antarctica, the CO2-induced warming lies clearly beyond the natural rhythm of temperature fluctuations. In Greenland, the CO2-induced warming is as fast or faster than the most rapid temperature shifts of the last ice age. The magnitude of polar temperature change in response to a quadrupling of atmospheric CO2 is comparable to the magnitude of the polar temperature change from the Last Glacial Maximum to present-day. When forced by prescribed changes in ice sheet reconstructions and CO2 changes, climate models systematically underestimate the glacial-interglacial polar temperature change.


2006 ◽  
Vol 43 ◽  
pp. 49-60 ◽  
Author(s):  
Vladimir B. Aizen ◽  
Elena M. Aizen ◽  
Daniel R. Joswiak ◽  
Koji Fujita ◽  
Nozomu Takeuchi ◽  
...  

AbstractSeveral firn/ice cores were recovered from the Siberian Altai (Belukha plateau), central Tien Shan (Inilchek glacier) and the Tibetan Plateau (Zuoqiupu glacier, Bomi) from 1998 to 2003. The comparison analyses of stable-isotope/geochemistry records obtained from these firn/ice cores identified the physical links controlling the climate-related signals at the seasonal-scale variability. The core data related to physical stratigraphy, meteorology and synoptic atmospheric dynamics were the basis for calibration, validation and clustering of the relationships between the firn-/ice-core isotope/ geochemistry and snow accumulation, air temperature and precipitation origin. The mean annual accumulation (in water equivalent) was 106 gcm−2 a−1 at Inilchek glacier, 69 gcm−2 a−1 at Belukha and 196 g cm−2 a−1 at Zuoqiupu. The slopes in regression lines between the δ18O ice-core records and air temperature were found to be positive for the Tien Shan and Altai glaciers and negative for southeastern Tibet, where heavy amounts of isotopically depleted precipitation occur during summer monsoons. The technique of coupling synoptic climatology and meteorological data with δ18O and d-excess in firn-core records was developed to determine climate-related signals and to identify the origin of moisture. In Altai, two-thirds of accumulation from 1984 to 2001 was formed from oceanic precipitation, and the rest of the precipitation was recycled over Aral–Caspian sources. In the Tien Shan, 87% of snow accumulation forms by precipitation originating from the Aral–Caspian closed basin, the eastern Mediterranean and Black Seas, and 13% from the North Atlantic.


1988 ◽  
Vol 10 ◽  
pp. 183-187 ◽  
Author(s):  
D. Wagenbach ◽  
K.O. Münnich ◽  
U. Schotterer ◽  
H. Oeschger

By chemical analysis of the upper 40 m of a 124 m ice core from a high-altitude Alpine glacier (Colle Gnifetti, Swiss Alps; 4450 m a.s.l.), records of mineral dust, pH, melt-water conductivity, nitrate and sulfate are obtained. The characteristics of the drilling site are discussed, as derived from glacio-meteorological and chemical analysis. As a consequence of high snow-erosion rates (usually during the winter months), annual snow accumulation is dominated by summer precipitation. Clean-air conditions prevail even during summer; however, they are frequently interrupted by polluted air masses or by air masses which are heavily loaded with desert dust.Absolutely dated reference horizons for Saharan dust, together with the position of the broad nuclear-weapon tritium peak, provide the time-scale for the following statements:(1) Since at least the turn of the century the background melt-water conductivity has been rising steadily, as has the mean snow acidity. The trend of increasing background conductivity at Colle Gnifetti (1.9μS/cm around the beginning of this century, and at present 3.4 μS/cm) is found to be comparable with the records of mean melt-water conductivity reported from ice cores from the Canadian High Arctic.(2) Sulfate and nitrate concentrations are higher by a factor of 4–5 than they were at the beginning of the century. This is to be compared with the two- to three-fold rise in the concentrations in south Greenland during about the same time span.


Sign in / Sign up

Export Citation Format

Share Document