scholarly journals Supplementary material to "Dominant patterns of interaction between the tropics and mid-latitudes in boreal summer: Causal relationships and the role of time-scales"

Author(s):  
Giorgia Di Capua ◽  
Jakob Runge ◽  
Reik V. Donner ◽  
Bart van den Hurk ◽  
Andrew G. Turner ◽  
...  
2020 ◽  
Author(s):  
Giorgia Di Capua ◽  
Jakob Runge ◽  
Reik V. Donner ◽  
Bart van den Hurk ◽  
Andrew G. Turner ◽  
...  

Abstract. Tropical convective activity represents a source of predictability for mid-latitude weather in the Northern Hemisphere. In winter, the El Niño–Southern Oscillation (ENSO) is the dominant source of predictability in the tropics and extra-tropics, but its role in summer is much less pronounced and the exact teleconnection pathways are not well understood. Here, we assess how tropical convection interacts with mid-latitude summer circulation at different intraseasonal time-scales and how ENSO affects these interactions. First, we apply maximum covariance analysis (MCA) between tropical convective activity and mid-latitude geopotential height fields to identify the dominant modes of interaction. The first MCA mode connects the South Asian monsoon with the mid-latitude circumglobal teleconnection pattern. The second MCA mode connects the western North Pacific summer monsoon in the tropics with a wave-5 pattern centred over the North Pacific High in the mid-latitudes. We show that the MCA patterns are fairly insensitive to the selected intraseasonal time-scale from weekly to 4-weekly data. To study the potential causal interdependencies between these modes and with other atmospheric fields, we apply causal effect networks (CEN) at different time-scales. CENs extend standard correlation analysis by removing the confounding effects of autocorrelation, indirect links and common drivers. In general, there is a two-way causal interaction between the tropics and mid-latitudes but the strength and sometimes sign of the causal link are time-scale dependent. We introduce causal maps that plot the regionally specific causal effect from each MCA mode. Those maps confirm the dominant patterns of interaction and in addition, highlight specific mid-latitude regions that are most strongly connected to tropical convection. In general, the identified causal teleconnection patterns are only mildly affected by ENSO and the tropical-mid-latitude linkages remain similar. Still, La Niña strengthens the South Asian monsoon generating a stronger response in the mid-latitudes, while during El Niño years, the Pacific pattern is reinforced. This study paves the way for process-based validation of boreal summer teleconnections in (sub-)seasonal forecast models and climate models and therefore helps to improve sub-seasonal and climate projections.


2021 ◽  
Author(s):  
Giorgia Di Capua ◽  
Reik V. Donner

<p>In climatology, correlation maps are often used to study the relationships between one 1D time series and a (spatiotemporal) 2D or even 3D field. However, correlation measures do not necessarily capture causal relationships and similarities in correlation maps obtained from different indices may appear if the set of indices contains correlated variables. Causal discovery tools such as the Peter and Clark – Momentary conditional independence (PCMCI) algorithm can help in disentangling spurious from causal links in both linear and nonlinear frameworks. In the linear case considered in the present work, PCMCI extends standard correlation analysis by removing the confounding effects of autocorrelation, indirect links and common drivers. Combining PCMCI and Causal Effect Networks on a 2D field helps identifying, and subsequently discarding the spurious correlations and thereby allows to retain only the causal links. The resulting visualization technique is referred to as a “causal map”.</p><p>In this presentation, we illustrate the application of causal maps in combination with maximum covariance analysis to assess how tropical convection interacts with mid-latitude circulation during boreal summer at different intraseasonal timescales. The obtained causal maps reveal the dominant patterns of interaction and highlight specific mid-latitude regions that are most strongly connected to tropical convection. In general, the identified causal teleconnection patterns are only mildly affected by ENSO variability and the tropical-mid-latitude linkages remain similar under different types of ENSO phases. Still, La Niña strengthens the South Asian monsoon generating a stronger response in the mid-latitudes, while during El Niño periods, the western North Pacific summer monsoon pattern is reinforced. Our study paves the way for a process-based validation of boreal summer teleconnections in (sub-)seasonal forecast models and climate models and therefore provides important clues towards improved sub-seasonal and climate projections.</p><p> </p><p>Reference: G. Di Capua, J. Runge, R.V. Donner, B. van den Hurk, A.G. Turner, R. Vellore, R. Krishnan, D. Coumou: Dominant patterns of interaction between the tropics and mid-latitudes in boreal summer: Causal relationships and the role of time-scales. Weather and Climate Dynamics, 1, 519-539 (2020)</p>


2010 ◽  
Vol 23 (20) ◽  
pp. 5375-5403 ◽  
Author(s):  
Agus Santoso ◽  
Alexander Sen Gupta ◽  
Matthew H. England

Abstract The genesis of mixed layer temperature anomalies across the Indian Ocean are analyzed in terms of the underlying heat budget components. Observational data, for which a seasonal budget can be computed, and a climate model output, which provides improved spatial and temporal coverage for longer time scales, are examined. The seasonal climatology of the model heat budget is broadly consistent with the observational reconstruction, thus providing certain confidence in extending the model analysis to interannual time scales. To identify the dominant heat budget components, covariance analysis is applied based on the heat budget equation. In addition, the role of the heat budget terms on the generation and decay of temperature anomalies is revealed via a novel temperature variance budget approach. The seasonal evolution of the mixed layer temperature is found to be largely controlled by air–sea heat fluxes, except in the tropics where advection and entrainment are important. A distinct shift in the importance and role of certain heat budget components is shown to be apparent in moving from seasonal to interannual time scales. On these longer time scales, advection gains importance in generating and sustaining anomalies over extensive regions, including the trade wind and midlatitude wind regimes. On the other hand, air–sea heat fluxes tend to drive the evolution of thermal anomalies over subtropical regions including off northwestern Australia. In the tropics, however, they limit the growth of anomalies. Entrainment plays a role in the generation and maintenance of interannual anomalies over localized regions, particularly off Sumatra and over the Seychelles–Chagos Thermocline Ridge. It is further shown that the spatial distribution of the role and importance of these terms is related to oceanographic features of the Indian Ocean. Mixed layer depth effects and the influence of model biases are discussed.


2020 ◽  
Vol 1 (2) ◽  
pp. 519-539
Author(s):  
Giorgia Di Capua ◽  
Jakob Runge ◽  
Reik V. Donner ◽  
Bart van den Hurk ◽  
Andrew G. Turner ◽  
...  

Abstract. Tropical convective activity represents a source of predictability for mid-latitude weather in the Northern Hemisphere. In winter, the El Niño–Southern Oscillation (ENSO) is the dominant source of predictability in the tropics and extratropics, but its role in summer is much less pronounced and the exact teleconnection pathways are not well understood. Here, we assess how tropical convection interacts with mid-latitude summer circulation at different intra-seasonal timescales and how ENSO affects these interactions. First, we apply maximum covariance analysis (MCA) between tropical convective activity and mid-latitude geopotential height fields to identify the dominant modes of interaction. The first MCA mode connects the South Asian monsoon with the mid-latitude circumglobal teleconnection pattern. The second MCA mode connects the western North Pacific summer monsoon in the tropics with a wave-5 pattern centred over the North Pacific High in the mid-latitudes. We show that the MCA patterns are fairly insensitive to the selected intra-seasonal timescale from weekly to 4-weekly data. To study the potential causal interdependencies between these modes and with other atmospheric fields, we apply the causal discovery method PCMCI at different timescales. PCMCI extends standard correlation analysis by removing the confounding effects of autocorrelation, indirect links and common drivers. In general, there is a two-way causal interaction between the tropics and mid-latitudes, but the strength and sometimes sign of the causal link are timescale dependent. We introduce causal maps that show the regionally specific causal effect from each MCA mode. Those maps confirm the dominant patterns of interaction and in addition highlight specific mid-latitude regions that are most strongly connected to tropical convection. In general, the identified causal teleconnection patterns are only mildly affected by ENSO and the tropical mid-latitude linkages remain similar. Still, La Niña strengthens the South Asian monsoon generating a stronger response in the mid-latitudes, while during El Niño years the Pacific pattern is reinforced. This study paves the way for process-based validation of boreal summer teleconnections in (sub-)seasonal forecast models and climate models and therefore works towards improved sub-seasonal predictions and climate projections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yafei Wang ◽  
Erik Brodin ◽  
Kenichiro Nishii ◽  
Hermann B. Frieboes ◽  
Shannon M. Mumenthaler ◽  
...  

AbstractColorectal cancer and other cancers often metastasize to the liver in later stages of the disease, contributing significantly to patient death. While the biomechanical properties of the liver parenchyma (normal liver tissue) are known to affect tumor cell behavior in primary and metastatic tumors, the role of these properties in driving or inhibiting metastatic inception remains poorly understood, as are the longer-term multicellular dynamics. This study adopts a multi-model approach to study the dynamics of tumor-parenchyma biomechanical interactions during metastatic seeding and growth. We employ a detailed poroviscoelastic model of a liver lobule to study how micrometastases disrupt flow and pressure on short time scales. Results from short-time simulations in detailed single hepatic lobules motivate constitutive relations and biological hypotheses for a minimal agent-based model of metastatic growth in centimeter-scale tissue over months-long time scales. After a parameter space investigation, we find that the balance of basic tumor-parenchyma biomechanical interactions on shorter time scales (adhesion, repulsion, and elastic tissue deformation over minutes) and longer time scales (plastic tissue relaxation over hours) can explain a broad range of behaviors of micrometastases, without the need for complex molecular-scale signaling. These interactions may arrest the growth of micrometastases in a dormant state and prevent newly arriving cancer cells from establishing successful metastatic foci. Moreover, the simulations indicate ways in which dormant tumors could “reawaken” after changes in parenchymal tissue mechanical properties, as may arise during aging or following acute liver illness or injury. We conclude that the proposed modeling approach yields insight into the role of tumor-parenchyma biomechanics in promoting liver metastatic growth, and advances the longer term goal of identifying conditions to clinically arrest and reverse the course of late-stage cancer.


Author(s):  
Hiroto Shiraki ◽  
Masahiro Sugiyama ◽  
Yuhji Matsuo ◽  
Ryoichi Komiyama ◽  
Shinichiro Fujimori ◽  
...  

In the original publication of the article, the incorrect file was published as supplementary material.


Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Fabio Dominguez ◽  
Jose Guilherme Milhano ◽  
Carlos A. Salgado ◽  
Konrad Tywoniuk ◽  
Victor Vila

In the first part of this work we study the color coherence phenomenon by considering the well-known quark-antiquark antenna with an in-medium hard gluon emission and an extra very soft emission outside it—double antenna. By discussing the coherence effects in terms of the survival probability, we generalize previous studies of the antenna radiation to the case of more than two emitters. After providing support to the jet quenching picture with effective emitters in the QCD cascade, we present a novel setup of an antenna splitting inside the medium taking into account the finite formation time of the dipole, which turns out to be an important scale. We read into the role of coherence and the relevant time scales which control the scenario, while also providing theoretical support for vacuum-like emissions early in the medium. Finally, by mapping the spectrum of in-medium splittings through the corresponding kinematical Lund diagram, we appreciate regimes of a close correspondence to a semi-classical description.


2012 ◽  
Vol 279 (1742) ◽  
pp. 3520-3526 ◽  
Author(s):  
Brian Tilston Smith ◽  
Amei Amei ◽  
John Klicka

Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of ‘young’ and ‘old’ species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.


Sign in / Sign up

Export Citation Format

Share Document