scholarly journals Observed wavenumber-frequency spectrum of global, normal mode function decomposed, fields: a possible evidence for nonlinear effects on the wave dynamics

2021 ◽  
Author(s):  
André Seiji Wakate Teruya ◽  
Breno Raphaldini ◽  
Victor Chavez Mayta ◽  
Carlos Frederico Mendonça Raupp ◽  
Pedro Leite da Silva Dias

Abstract. The study of tropical tropospheric disturbances has led to important challenges from both observational and theoretical points of view. In particular, the observed wavenumber-frequency spectrum of tropical oscillations, also known as Wheeler-Kiladis diagram, has helped bridging the gap between observations and the linear theory of equatorial waves. Here we have obtained a similar wavenumber-frequency spectrum for each equatorial wave type by performing a normal mode function (NMF) decomposition of global Era-Interim reanalysis data, with the NMF basis being given by the eigensolutions of the primitive equations in spherical coordinates, linearized around a resting background state. In this methodology, the global multi-level horizontal velocity and geopotential height fields are projected onto the normal mode functions characterized by a vertical mode, a zonal wavenumber, a meridional quantum index and a mode type, namely Rossby, Kelvin, mixed Rossby-gravity and westward and eastward propagating inertio-gravity modes. The horizontal velocity and geopotential height fields associated with each mode type are then reconstructed on the physical space, and the corresponding wavenumber-frequency spectrum is calculated for the 200 hPa zonal wind. The results reveal some expected structures, such as the dominant global-scale Rossby and Kelvin waves constituting the intraseasonal frequency associated with the Madden-Julian Oscillation. On the other hand, some unexpected features such as westward propagating Kelvin waves and eastward propagating westward inertio-gravity waves are also revealed by our observed 200 hPa zonal wind spectrum. These intriguing behaviours represent a large departure from the linear equatorial wave theory and can be a result of strong nonlinearities in the wave dynamics.

2008 ◽  
Vol 65 (9) ◽  
pp. 2936-2948 ◽  
Author(s):  
Harry H. Hendon ◽  
Matthew C. Wheeler

Abstract Three aspects of space–time spectral analysis are explored for diagnosis of the organization of tropical convection by the Madden–Julian oscillation (MJO) and other equatorial wave modes: 1) definition of the background spectrum upon which spectral peaks are assessed, 2) alternate variance preserving display of the spectra, and 3) the space–time coherence spectrum. Here the background spectrum at each zonal wavenumber is assumed to result from a red noise process. The associated decorrelation time for the red noise process for tropical convection is found to be half as long as for zonal wind, reflecting the different physical processes controlling each field. The significance of spectral peaks associated with equatorial wave modes for outgoing longwave radiation (OLR), which is a proxy for precipitating deep convection, and zonal winds that stand out above the red background spectrum is similar to that identified using a background spectrum resulting from ad hoc smoothing of the original spectrum. A variance-preserving display of the space–time power spectrum with a logarithmic frequency axis is useful for directly detecting Kelvin waves (periods 5–15 days for eastward zonal wavenumbers 1–5) and for highlighting their distinction from the MJO. The space–time coherence of OLR and zonal wind is predominantly associated with the MJO and other equatorial waves. The space–time coherence is independent of estimating the background spectrum and is quantifiable; thus, it is suggested as a useful metric for the MJO and other equatorial waves in observations and simulations. The space–time coherence is also used to quantify the association of Kelvin waves in the stratosphere with convective variability in the troposphere and for detection of barotropic Rossby–Haurwitz waves.


2019 ◽  
Vol 76 (5) ◽  
pp. 1457-1469 ◽  
Author(s):  
Katarina Kosovelj ◽  
Fred Kucharski ◽  
Franco Molteni ◽  
Nedjeljka Žagar

Abstract The paper presents four ensembles of numerical experiments that compare the response to monopole and dipole heating perturbations resembling different phases of the Madden–Julian oscillation (MJO). The results quantify the Rossby and inertio-gravity (IG) wave response using the normal-mode function decomposition. The day 3 response is characterized by about 60% variance in the IG modes, with about 85% of it belonging to the Kelvin waves. On day 14, only 10% of the response variance is due to the Kelvin waves. Although the n = 1 Rossby mode is the main contributor to the Rossby variance at all time scales, the n > 1 Rossby modes contribute over 50% of the balanced response to the MJO heating. In the short range, dipole perturbations produce a response with the maximal variance in zonal wavenumbers k = 2–3 whereas in the medium range the response maximizes at k = 1 in all experiments. Furthermore, the medium-range response to the heating perturbation mimicking MJO phase 6 is found also over Europe.


Author(s):  
Qingyang Song ◽  
Hidenori Aiki

AbstractIntraseasonal waves in the tropical Atlantic Ocean have been found to carry prominent energy that affects interannual variability of zonal currents. This study investigates energy transfer and interaction of wind-driven intraseasonal waves using single-layer model experiments. Three sets of wind stress forcing at intraseasonal periods of around 30 days, 50 days and 80 days with a realistic horizontal distribution are employed separately to excite the second baroclinic mode in the tropical Atlantic. A unified scheme for calculating the energy flux, previously approximated and used for the diagnosis of annual Kelvin and Rossby waves, is utilized in the present study in its original form for intraseasonal waves. Zonal velocity anomalies by Kelvin waves dominate the 80-day scenario. Meridional velocity anomalies by Yanai waves dominate the 30-day scenario. In the 50-day scenario, the two waves have comparable magnitudes. The horizontal distribution of wave energy flux is revealed. In the 30-day and 50-day scenarios, a zonally alternating distribution of cross-equatorial wave energy flux is found. By checking an analytical solution excluding Kelvin waves, we confirm that the cross-equatorial flux is caused by the meridional transport of geopotential at the equator. This is attributed to the combination of Kelvin and Yanai waves and leads to the asymmetric distribution of wave energy in the central basin. Coastally-trapped Kelvin waves along the African coast are identified by along-shore energy flux. In the north, the bend of the Guinea coast leads the flux back to the equatorial basin. In the south, the Kelvin waves strengthened by local wind transfer the energy from the equatorial to Angolan regions.


2019 ◽  
Author(s):  
Yuke Wang ◽  
Valery Shulga ◽  
Gennadi Milinevsky ◽  
Aleksey Patoka ◽  
Oleksandr Evtushevsky ◽  
...  

Abstract. The impact of a major sudden stratospheric warming (SSW) in the Arctic in February 2018 on the mid-latitude mesosphere was investigated by performing microwave radiometer measurements of carbon monoxide (CO) and zonal wind above Kharkiv, Ukraine (50.0° N, 36.3° E). The mesospheric peculiarities of this SSW event were observed using recently designed and installed microwave radiometer in East Europe for the first time. The data from the ERA-Interim and NCEP–NCAR reanalyses, as well as the Aura Microwave Limb Sounder measurements, have been also used. Microwave observations of the daily CO profiles in January–March 2018 allowed retrieving mesospheric zonal wind at 70–85 km (below the winter mesopause) over the Kharkiv site. The reverse of the mesospheric westerly from about 10 m s−1 to the easterly wind of about −10 m s−1 around 10 February has been registered. Local microwave observations in the NH midlatitudes combined with reanalysis data show wide ranges of daily variability in CO, zonal wind, temperature and geopotential height in the mesosphere and stratosphere during the SSW 2018. Oscillations in the vertical CO profile, zonal wind, and geopotential height during the SSW, stratopause disappearance after the SSW onset and strong CO and westerly wind peaks at the start of the SSW recovery phase have been observed. The observed CO variability can be explained by vertical and horizontal air mass redistribution due to planetary wave activity with the replacement of the CO-rich air by CO-poor air and vice versa, in agreement with other studies. The results of microwave measurements of CO and zonal wind in the midlatitude mesosphere at 70–85 km altitudes, which still is not adequately covered by ground-based observations, are useful for improving our understanding of the SSW impacts in this region.


2021 ◽  
Author(s):  
Dörthe Handorf ◽  
Ozan Sahin ◽  
Annette Rinke ◽  
Jürgen Kurths

<p>Under the rapid and amplified warming of the Arctic, changes in the occurrence of Arctic weather and climate extremes are evident which have substantial cryospheric and biophysical impacts like floods, droughts, coastal erosion or wildfires. Furthermore, these changes in weather and climate extremes have the potential to further amplify Arctic warming. <br>Here we study extreme cyclone events in the Arctic, which often occur during winter and are associated with extreme warming events that are caused by cyclone-related heat and moisture transport into the Arctic. In that way Arctic extreme cyclones have the potential to retard sea-ice growth in autumn and winter or to initiate an earlier melt-season onset. <br>To get a better understanding of these extreme cyclones and their occurrences in the Arctic, it is important to reveal the related atmospheric teleconnection patterns and understand their underlying mechanisms. In this study, the methodology of complex networks is used to identify teleconnections associated with extreme cyclones events (ECE) over Spitzbergen. We have chosen Spitzbergen, representative for the Arctic North Atlantic region which is a hot spot of Arctic climate change showing also significant recent changes in the occurrence of extreme cyclone events. <br>Complex climate networks have been successfully applied in the analysis of climate teleconnections during the last decade. To analyze time series of unevenly distributed extreme events, event synchronization (ES) networks are appropriate. Using this framework, we analyze the spatial patterns of significant synchronization between extreme cyclone events over the Spitzbergen area and extreme events in sea-level pressure (SLP) in the rest of the Northern hemisphere for the extended winter season from November to March. Based on the SLP fields from the newest atmospheric reanalysis ERA5, we constructed the ES networks over the time period 1979-2019.<br>The spatial features of the complex network topology like Eigenvector centrality, betweenness centrality and network divergence are determined and their general relation to storm tracks, jet streams and waveguides position is discussed. Link bundles in the maps of statistically significant links of ECEs over Spitzbergen with the rest of the Northern Hemisphere have revealed two classes of teleconnections: Class 1 comprises links from various regions of the Northern hemisphere to Spitzbergen, class 2 comprises links from Spitzbergen to various regions of the Northern hemisphere. For each class three specific teleconnections have been determined. By means of composite analysis, the corresponding atmospheric conditions are characterized.<br>As representative of class 1, the teleconnection between extreme events in SLP over the subtropical West Pacific and delayed ECEs at Spitzbergen is investigated. The corresponding lead-lag analysis of atmospheric fields of SLP, geopotential height fields and meridional wind fields suggests that the class 1 teleconnections are caused by tropical forcing of poleward emanating Rossby wave trains. As representative of class 2, the teleconnection between ECEs at Spitzbergen and delayed extreme events in SLP over Northwest Russia is analyzed. The corresponding lead-lag analysis of atmospheric fields of SLP and geopotential height fields from the troposphere to the stratosphere suggests that the class 2 teleconnections are caused by troposphere-stratosphere coupling processes.</p>


2007 ◽  
Vol 20 (11) ◽  
pp. 2659-2674 ◽  
Author(s):  
Benjamin Pohl ◽  
Adrian J. Matthews

Abstract The Madden–Julian oscillation (MJO) is analyzed using the reanalysis zonal wind– and satellite outgoing longwave radiation–based indices of Wheeler and Hendon for the 1974–2005 period. The average lifetime of the MJO events varies with season (36 days for events whose central date occurs in December, and 48 days for events in September). The lifetime of the MJO in the equinoctial seasons (March–May and October–December) is also dependent on the state of El Niño–Southern Oscillation (ENSO). During October–December it is only 32 days under El Niño conditions, increasing to 48 days under La Niña conditions, with similar values in northern spring. This difference is due to faster eastward propagation of the MJO convective anomalies through the Maritime Continent and western Pacific during El Niño, consistent with theoretical arguments concerning equatorial wave speeds. The analysis is extended back to 1950 by using an alternative definition of the MJO based on just the zonal wind component of the Wheeler and Hendon indices. A rupture in the amplitude of the MJO is found in 1975, which is at the same time as the well-known rupture in the ENSO time series that has been associated with the Pacific decadal oscillation. The mean amplitude of the MJO is 16% larger in the postrupture (1976–2005) compared to the prerupture (1950–75) period. Before the 1975 rupture, the amplitude of the MJO is maximum (minimum) under El Niño (La Niña) conditions during northern winter, and minimum (maximum) under El Niño (La Niña) conditions during northern summer. After the rupture, this relationship disappears. When the MJO–ENSO relationship is analyzed using all-year-round data, or a shorter dataset (as in some previous studies), no relationship is found.


SOLA ◽  
2007 ◽  
Vol 3 ◽  
pp. 13-16 ◽  
Author(s):  
Noriyuki Nishi ◽  
Junko Suzuki ◽  
Atsushi Hamada ◽  
Masato Shiotani

2020 ◽  
Author(s):  
Haiyan Li ◽  
Qingxiang Li

<p>We explored the gravity wave behavior and its role for the unusual QBO structure in 2015/2016 by analyzing the data of U.S. radiosonde with high vertical resolution over four equatorial stations from 1998 to 2017. The result implies that the gravity wave behavior should play an important role during the QBOW phase interrupted around 22 km in 2015/2016 winter. While the role of gravity wave was not as important as Kelvin waves during the prolonged and upward propagating westerly zonal wind around 27 km. The enhanced gravity wave may be generated by the instability of the stratospheric atmosphere rather than the tropospheric convection because the convection is weak during the unusual QBO structure over the four equatorial stations.</p>


Sign in / Sign up

Export Citation Format

Share Document