scholarly journals Identification of wind turbine main-shaft torsional loads from high-frequency SCADA (supervisory control and data acquisition) measurements using an inverse-problem approach

2021 ◽  
Vol 6 (6) ◽  
pp. 1401-1412
Author(s):  
W. Dheelibun Remigius ◽  
Anand Natarajan

Abstract. To assess the structural health and remaining useful life of wind turbines within wind farms, the site-specific structural response and modal parameters of the primary structures are required. In this regard, a novel inverse-problem-based methodology is proposed here to identify the dynamic quantities of the drivetrain main shaft, i.e. torsional displacement and coupled stiffness. As a model-based approach, an inverse problem of a mathematical model concerning the coupled-shaft torsional dynamics with high-frequency SCADA (supervisory control and data acquisition) measurements as input is solved. It involves Tikhonov regularisation to minimise the measurement noise and irregularities on the shaft torsional displacement obtained from measured rotor and generator speed. Subsequently, the regularised torsional displacement along with necessary SCADA measurements is used as an input to the mathematical model, and a model-based system identification method called the collage method is employed to estimate the coupled torsional stiffness. It is also demonstrated that the estimated shaft torsional displacement and coupled stiffness can be used to identify the site-specific main-shaft torsional loads. It is shown that the torsional loads estimated by the proposed methodology is in good agreement with the aeroelastic simulations of the Vestas V52 wind turbine. Upon successful verification, the proposed methodology is applied to the V52 turbine to identify the site-specific main-shaft torsional loads and damage-equivalent load. Since the proposed methodology does not require a design basis or additional measurement sensors, it can be directly applied to wind turbines within a wind farm that possess high-frequency SCADA measurements.

2021 ◽  
Author(s):  
W. Dheelibun Remigius ◽  
Anand Natarajan

Abstract. To assess the structural health and remaining useful life of a wind turbine within wind farms one would require site-specific dynamic quantities such as structural response and modal parameters. In this regard, a novel inverse problem-based methodology is proposed here to identify the dynamic quantities of the drive train main shaft, i.e., torsional displacement and coupled stiffness. As a model-based approach, an inverse problem of a mathematical model concerning the coupled shaft torsional dynamics with SCADA measurements as input is solved. It involves Tikhonov regularisation to smoothen the measurement noise and irregularities on the shaft torsional displacement obtained from measured rotor and generator speed. Subsequently, the regularised torsional displacement along with necessary SCADA measurements is used as an input for the mathematical model and a model-based system identification method called the collage method is employed to estimate the coupled torsional stiffness. It is also demonstrated that the estimated shaft torsional displacement and coupled stiffness can be used to identify the site-specific main shaft torsional loads. It is shown that the torsional loads estimated by the proposed methodology is in good agreement with the aeroelastic simulations of the Vestas V52 wind turbine. Upon successful verification, the proposed methodology is applied to the V52 turbine SCADA measurements to identify the site-specific main shaft torsional loads and damage equivalent load. Since the proposed methodology does not require a design basis or additional measurement sensors, it can be directly applied to wind turbines within a wind farm irrespective of their age.


2021 ◽  
Vol 23 (1) ◽  
pp. 110-116
Author(s):  
Isaac Segovia Ramirez ◽  
Behnam Mohammadi-Ivatloo ◽  
Fausto Pedro García Márquez

Wind energy is one of the most relevant renewable energy. A proper wind turbine maintenance management is required to ensure continuous operation and optimized maintenance costs. Larger wind turbines are being installed and they require new monitoring systems to ensure optimization, reliability and availability. Advanced analytics are employed to analyze the data and reduce false alarms, avoiding unplanned downtimes and increasing costs. Supervisory control and data acquisition system determines the condition of the wind turbine providing large dataset with different signals and alarms. This paper presents a new approach combining statistical analysis and advanced algorithm for signal processing, fault detection and diagnosis. Principal component analysis and artificial neural networks are employed to evaluate the signals and detect the alarm activation pattern. The dataset has been reduced by 93% and the performance of the neural network is incremented by 1000% in comparison with the performance of original dataset without filtering process.


2020 ◽  
Vol 190 ◽  
pp. 00019
Author(s):  
Katherin Indriawati ◽  
Choirul Mufit ◽  
Andi Rahmadiansah

The variation of wind speed causes the electric power generated by the turbine also varies. To obtain maximum power, the rotor speed of wind turbines must be optimally rated. The rotor speed can be controlled by manipulating the torque from the generator; this method is called Torque Control. In that case, a DC-DC converter is needed as the control actuator. In this study, a buck converter-based supervisory control design was performed on the Horizontal-axis wind turbines (HAWT). Supervisory control is composed of two control loops arranged in cascade, and there is a formula algorithm as the supervisory level. The primary loop uses proportional control mode with a proportional gain of 0.3, whereas in the secondary loop using proportional-integral control mode with a proportional gain of 5.2 and an integral gain of 0.1. The Supervisory control has been implemented successfully and resulted in an average increase in turbine power of 4.1 % at 5 m s–1 and 10.58 % at 6 m s–1 and 11.65 % at 7 m s–1, compared to wind turbine systems without speed control.


2019 ◽  
Vol 53 (1-2) ◽  
pp. 164-180 ◽  
Author(s):  
Xian Wang ◽  
Qiancheng Zhao ◽  
Xuebing Yang ◽  
Bing Zeng

In order to conduct a further in-depth exploration of the role of temperature-related parameters in the condition monitoring of wind turbines, this paper proposes a method to assess the condition of wind turbines by analyzing the supervisory control and data acquisition system temperature-related parameters based on existing research. A prediction model of time-sequence regression is established, based on the key temperature signals of WTs, so as to reflect their health condition in the form of prediction residuals. A kind of health index from the perspective of temperature-related parameters is developed by separating the statistics concerning the conformity of the predicted values of key temperature parameters within a certain time window from the measured values in order to clearly present the implied information on the health condition of wind turbines contained in the model prediction residuals. The case study shows that the trend of health index from the perspective of temperature-related parameters is consistent with the health condition of wind turbines. In some instances, its decline obviously occurs earlier than the maintenance provided to address the stoppage, suggesting that such indexes can effectively reflect some early health problems of the wind turbines to provide a reference for their scientific maintenance.


2013 ◽  
Vol 569-570 ◽  
pp. 644-651 ◽  
Author(s):  
Navid Goudarzi ◽  
Wei Dong Zhu

A multiple generator drivetrain (MGD), where a single large generator in a wind turbine is replaced by multiple generators with the same or different rated powers, is proposed along with an automatic switch as an alternative to an existing MGD configuration. Qualitative and quantitative comparisons of a MGD with a conventional drivetrain are provided to better understand the advantages and disadvantages of having a MGD in wind turbines. New approaches for improving the efficiency and the reliability, expanding the operational range, and reducing the cost of a wind turbine are mentioned. A simple mathematical model for a MGD with electromagnetic clutches is developed, a novel prototype of a MGD is designed and fabricated, and experiments are conducted on the prototype. It is concluded that a multiple-generator drivetrain with generators operating individually or in parallel has a better potential of improving the efficiency and the reliability, expanding the operational range, and reducing the cost of offshore and onshore wind turbines than the existing MGD configuration.


2015 ◽  
Vol 6 (2) ◽  
pp. 10
Author(s):  
Bavo De Maré ◽  
Jacob Sukumaran ◽  
Mia Loccufier ◽  
Patrick De Baets

While the number of offshore wind turbines is growing and turbines getting bigger and more expensive, the need for good condition monitoring systems is rising. From the research it is clear that failures of the gearbox, and in particular the gearwheels and bearings of the gearbox, have been responsible for the most downtime of a wind turbine. Gearwheels and bearings are being simulated in a multi-sensor environment to observe the wear on the surface.


Author(s):  
Seyed Mojtaba Hosseini Bafoghi ◽  
Hamidreza Khezri

In this paper, a mathematical method is proposed to control the output frequency of a self-excited induction generator using wind turbines and static loads. A dynamic model of the wind turbine is implemented to model the Connections and fittings of the wind turbine to convert the wing energy to electrical energy. Also a PID controller system is proposed to control the rotor speed of the wind turbine. The proposed mathematical model is developed in MATLAB-Simulink software. The simulation results showed that the developed controller can be used to control the wind turbine velocity.


Author(s):  
Д. Г. Алексієвський ◽  
К. В. Манаєв ◽  
О. О. Панкова ◽  
А. В. Таранець ◽  
С. Л. Шмалій

Building a visual mathematical model of the electromechanical wind power system with aerodynamic multiplication. In the process of constructing a visual mathematical model of the electromechanical system of wind turbines with aerodynamic multiplication, a mathematical apparatus for describing the system in local mean values of variables was used. Verification of the mathematical model was carried out in the MATLAB Simulink program. A visual mathematical model of the electromechanical system of wind turbines with aerodynamic multiplication is developed, which includes mechanical power losses on the shaft of the primary wind turbine. The visual mathematical model of the electromechanical system of wind power plant with aerodynamic multiplication taking into account the mechanical power losses on the shaft of the primary wind turbine with uneven distribution of power flows between the three secondary aeromechanical subsystems was proposed for the first time.


2001 ◽  
Vol 123 (4) ◽  
pp. 296-303 ◽  
Author(s):  
Peter Fuglsang ◽  
Kenneth Thomsen

A method is presented for site-specific design of wind turbines where cost of energy is minimized. A numerical optimization algorithm was used together with an aeroelastic load prediction code and a cost model. The wind climate was modeled in detail including simulated turbulence. Response time series were calculated for relevant load cases, and lifetime equivalent fatigue loads were derived. For the fatigue loads, an intelligent sensitivity analysis was used to reduce computational costs. Extreme loads were derived from statistical response calculations of the Davenport type. A comparison of a 1.5 MW stall regulated wind turbine in normal onshore flat terrain and in an offshore wind farm showed a potential increase in energy production of 28% for the offshore wind farm, but also significant increases in most fatigue loads and in cost of energy. Overall design variables were optimized for both sites. Compared to an onshore optimization, the offshore optimization increased swept area and rated power whereas hub height was reduced. Cost of energy from manufacture and installation for the offshore site was reduced by 10.6% to 4.6¢. This reduction makes offshore wind power competitive compared with today’s onshore wind turbines. The presented study was made for one wind turbine concept only, and many of the involved sub models were based on simplified assumptions. Thus there is a need for further studies of these models.


Sign in / Sign up

Export Citation Format

Share Document