scholarly journals FORMATION OF A MATHEMATICAL MODEL AND ALGORITHM FOR IMPLEMENTATION OF CALCULATION MAIN PIPELINE - OF SHELL STRUCTURE

2021 ◽  
Vol 7 (6(60)) ◽  
pp. 22-26
Author(s):  
ABDUSAMAT ABDUSATTAROV ◽  
NODIRA RUZIEVA ◽  
NIZAMBAY SABIROV

The paper considers methods of numerical calculation of elements of shell structures - main pipelines under various types of loading. Refined equations of motion for cylindrical shell structures are given. To solve boundary value problems of thin-walled structures, the Bubnov-Galerkin method, finite differences using the sweep method is used. As an example, the solution of the boundary value problem of a cylindrical shell under static loading by the finite difference method is given. And also the results of the study of the numerical convergence of the calculated values.

2012 ◽  
Vol 204-208 ◽  
pp. 4698-4701
Author(s):  
Jin Hua Yang ◽  
De Liang Chen

Abstract. On the basis of the nonlinear plate-shell and piezoelectric theory, the governing equations of motion for axisymmetrical piezoelectric delaminated cylindrical shell under hygrothermal conditions were derived. The governing equation of transverse motion was modified by contact force and thus the penetration between two delaminated layers could be avoided. The whole problem was resolved by using the finite difference method. In calculation examples, the effects of delamination length, depth and amplitude of load on the nonlinear dynamic response of the axisymmetrical piezoelectric delaminated shell under hygrothermal conditions were discussed in detail.


2021 ◽  
Vol 10 (1) ◽  
pp. 414-430
Author(s):  
Chunwei Zhang ◽  
Qiao Jin ◽  
Yansheng Song ◽  
Jingli Wang ◽  
Li Sun ◽  
...  

Abstract The sandwich structures are three- or multilayered structures such that their mechanical properties are better than each single layer. In the current research, a three-layered cylindrical shell including a functionally graded porous core and two reinforced nanocomposite face sheets resting on the Pasternak foundation is used as model to provide a comprehensive understanding of vibrational behavior of such structures. The core is made of limestone, while the epoxy is utilized as the top and bottom layers’ matrix phase and also it is reinforced by the graphene nanoplatelets (GNPs). The pattern of the GNPs dispersion and the pores distribution play a crucial role at the continuous change of the layers’ properties. The sinusoidal shear deformation shells theory and the Hamilton’s principle are employed to derive the equations of motion for the mentioned cylindrical sandwich shell. Ultimately, the impacts of the model’s geometry, foundation moduli, mode number, and deviatory radius on the vibrational behavior are investigated and discussed. It is revealed that the natural frequency and rotation angle of the sandwich shell are directly related. Moreover, mid-radius to thickness ratio enhancement results in the natural frequency reduction. The results of this study can be helpful for the future investigations in such a broad context. Furthermore, for the pipe factories current study can be effective at their designing procedure.


Author(s):  
Igor Orynyak ◽  
Yaroslav Dubyk

Simple approximate formulas for the natural frequencies of circular cylindrical shells are presented for modes in which transverse deflection dominates. Based on the Donnell-Mushtari thin shell theory the equations of motion of the circular cylindrical shell are introduced, using Vlasov assumptions and Fourier series for the circumferential direction, an exact solution in the axial direction is obtained. To improve the results assumptions of Vlasov’s semimomentless theory are enhanced, i.e. we have used only the hypothesis of middle surface inextensibility to obtain a solution in axial direction. Nonlinear characteristic equations and natural mode shapes, are derived for all type of boundary conditions. Good agreement with experimental data and FEM is shown and advantage over the existing formulas for a variety of boundary conditions is presented.


10.12737/208 ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 20-30
Author(s):  
Котляревский ◽  
Vladimir Kotlyarevskiy ◽  
Ларионов ◽  
Valeriy Larionov ◽  
Александров ◽  
...  

Operation in difficult climatic conditions and the large extent of the main gas and oil pipelines causes the need of search of new decisions for ensuring the reliable and safe operation of pipeline transport objects. The technique offered in this article is based on the plotting of seismic vulnerability function of the main pipeline embedded in soil by calculated dynamic analysis of stresseddeformed state in conditions of experimental information lack.


Author(s):  
Jinhao Qiu ◽  
Junji Tani

Abstract Equations of motion for multi-layer piezoelectric cylindrical shells and the equations of the integrated piezoelectric sensors are derived. The state equation is obtained by solving the equations of motion with modal expansion method. The feedback control, feedforward control, and their combination are applied in the control of forced vibration of the piezoelectric cylindrical shell with integrated sensor and actuators. The simulation and experimental results show that good control effectiveness can be obtained by using the integrated piezoelectric sensor and actuators in conjunction with the combination of feedback and feedforward control methods.


Author(s):  
Katsuhisa Fujita ◽  
Atsuhiko Shintani ◽  
Masakazu Ono

In this paper, the dynamic stability of a thin cylindrical shell subjected to axial leakage flow is discussed. In this paper, the third part of a study of the axial leakage flow-induced vibration of a thin cylindrical shell, we focus on circumferential vibration, that is, the ovaling vibration of a shell. The coupled equations of motion between shell and liquid are obtained by using Donnell’s shell theory and the Navier-Stokes equation. The added mass, added damping and added stiffness in the coupled equations of motion are described by utilizing the unsteady fluid pressure acting on the shell. The relations between axial velocity and the unstable vibration phenomena are clarified concerning the circumferential vibration of a shell. Numerical parametric studies are done for various dimensions of a shell and an axial leakage flow.


Sign in / Sign up

Export Citation Format

Share Document