Atomic layer deposition of zirconium oxide on copper patterned silicon substrate

Author(s):  
J. Parulekar ◽  
S. Selvaraj ◽  
C.G. Takoudis

Atomic layer deposition (ALD) was performed on copper patterned silicon substrates using zirconium precursor and ethanol as both an oxygen source and reducing agent. Ethanol targeted copper oxide formed on the copper surface, reverting it back to metallic copper. Selective ALD (SALD) of metal oxides on silicon surfaces over copper surfaces has been demonstrated up to 2-3 nm, though the process seems to lose its selectivity afterwards. We strive to maintain selectivity to thicker films by stepping away from conventional ALD processes utilizing oxidants. From previous studies with HfO2 and TiO2 SALD, we speculate that the oxidation of copper to copper oxide spoils selectivity. In this present study, we carried out oxidant-free ALD by using ethanol as a co-reactant solely on the silicon portion of these substrates. This process will occur in-situ every 20-30 ALD cycles for ALD of ZrO2. As expected, reduced ALD growth rate was observed with ethanol compared to that of water or ozone, with a growth rate of about 0.04 nm/cycle on the silicon portion of the substrate.

2013 ◽  
Vol 4 ◽  
pp. 732-742 ◽  
Author(s):  
Jörg Haeberle ◽  
Karsten Henkel ◽  
Hassan Gargouri ◽  
Franziska Naumann ◽  
Bernd Gruska ◽  
...  

We report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt) and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate) over 4” wafers and correlate them to X-ray photoelectron spectroscopy (XPS) results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.


Author(s):  
A. Jablansky ◽  
Jorge I. Rossero A. ◽  
G. Jursich ◽  
C.G. Takoudis

As microelectronic devices shrink, thinner diffusion barrier layers are needed to separate the copper and silicon substrates while leaving the copper vias open for conduction. Selective atomic layer deposition (ALD) of titanium dioxide(TiO2), a good barrier layer, onto silicon was studied by minimizing the exposure time to air of these substrates immediately before deposition. The minimized exposure time mimicked industrial conditions, where waiting before deposition is costly. Tetrakis(diethylamido)titanium (TDEAT) was used as the precursor, and water was the oxidizing agent. TDEAT was first deposited on silicon wafers using ALD to verify a steady, linear growth rate reported in the literature, and the measured rate of 0.9 ± 0.1 Å/cycle is consistent with values previously reported. Minimized exposure to air had no effect on the growth rate of TiO2 on silicon, and the effect on copper has yet to be determined.


2019 ◽  
Vol 13 (1) ◽  
pp. 453-457 ◽  
Author(s):  
Raija Matero ◽  
Suvi Haukka ◽  
Marko Tuominen

2018 ◽  
Vol 282 ◽  
pp. 232-237
Author(s):  
Adam Hinckley ◽  
Anthony Muscat

Atomic layer deposition (ALD) was used to grow titanium nitride (TiN) on SiO2with TiCl4and N2H4. X-ray photoelectron spectroscopy (XPS) and ellipsometry were used to characterize film growth. A hydrogen-terminated Si (Si-H) surface was used as a reference to understand the reaction steps on SPM cleaned SiO2. The growth rate of TiN at 573 K doubled on Si-H compared to SiO2because of the formation of Si-N bonds. When the temperature was raised to 623 K, O transferred from Ti to Si to form Si-N when exposed to N2H4. Oxygen and Ti could be removed at 623 K by TiCl4producing volatile species. The added surface reactions reduce the Cl in the film below detection limits.


2013 ◽  
Vol 107 ◽  
pp. 223-228 ◽  
Author(s):  
Marcel Melzer ◽  
Thomas Waechtler ◽  
Steve Müller ◽  
Holger Fiedler ◽  
Sascha Hermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document