scholarly journals RBS and NRA analysis for films with high growth rate prepared by atomic layer deposition

Author(s):  
B. Xia ◽  
J.J. Ganem ◽  
S. Steydli ◽  
H. Tancrez ◽  
I. Vickridge
2019 ◽  
Vol 13 (1) ◽  
pp. 453-457 ◽  
Author(s):  
Raija Matero ◽  
Suvi Haukka ◽  
Marko Tuominen

2005 ◽  
Vol 11 (10) ◽  
pp. 415-419 ◽  
Author(s):  
J. Päiväsaari ◽  
J. Niinistö ◽  
K. Arstila ◽  
K. Kukli ◽  
M. Putkonen ◽  
...  

2019 ◽  
Vol 45 (3) ◽  
pp. 3811-3815 ◽  
Author(s):  
Jin-Geun Yu ◽  
Byung Chan Yang ◽  
Jeong Woo Shin ◽  
Sungje Lee ◽  
Seongkook Oh ◽  
...  

2018 ◽  
Author(s):  
Kyle J. Blakeney ◽  
Philip D. Martin ◽  
Charles H. Winter

<p>Aluminum dihydride complexes containing amido-amine ligands were synthesized and evaluated as potential reducing precursors for thermal atomic layer deposition (ALD). Highly volatile monomeric complexes AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>) are more thermally stable than common Al hydride thin film precursors such as AlH<sub>3</sub>(NMe<sub>3</sub>). ALD film growth experiments using TiCl<sub>4</sub> and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) produced titanium carbonitride films with a high growth rate of 1.6-2.0 Å/cycle and resistivities around 600 μΩ·cm within a very wide ALD window of 220-400 °C. Importantly, film growth proceeded via self-limited surface reactions, which is the hallmark of an ALD process. Root mean square surface roughness was only 1.3 % of the film thickness at 300 °C by atomic force microscopy. The films were polycrystalline with low intensity, broad reflections corresponding to the cubic TiN/TiC phase according to grazing incidence X-ray diffraction. Film composition by X-ray photoelectron spectroscopy was approximately TiC<sub>0.8</sub>N<sub>0.5</sub> at 300 °C with small amounts of Al (6 at%), Cl (4 at%) and O (4 at%) impurities. Remarkably, self-limited growth and low Al content was observed in films deposited well above the solid-state thermal decomposition point of AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), which is ca. 185 °C. Similar growth rates, resistivities, and film compositions were observed in ALD film growth trials using AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>). </p>


2018 ◽  
Author(s):  
Kyle J. Blakeney ◽  
Philip D. Martin ◽  
Charles H. Winter

<p>Aluminum dihydride complexes containing amido-amine ligands were synthesized and evaluated as potential reducing precursors for thermal atomic layer deposition (ALD). Highly volatile monomeric complexes AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>) are more thermally stable than common Al hydride thin film precursors such as AlH<sub>3</sub>(NMe<sub>3</sub>). ALD film growth experiments using TiCl<sub>4</sub> and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) produced titanium carbonitride films with a high growth rate of 1.6-2.0 Å/cycle and resistivities around 600 μΩ·cm within a very wide ALD window of 220-400 °C. Importantly, film growth proceeded via self-limited surface reactions, which is the hallmark of an ALD process. Root mean square surface roughness was only 1.3 % of the film thickness at 300 °C by atomic force microscopy. The films were polycrystalline with low intensity, broad reflections corresponding to the cubic TiN/TiC phase according to grazing incidence X-ray diffraction. Film composition by X-ray photoelectron spectroscopy was approximately TiC<sub>0.8</sub>N<sub>0.5</sub> at 300 °C with small amounts of Al (6 at%), Cl (4 at%) and O (4 at%) impurities. Remarkably, self-limited growth and low Al content was observed in films deposited well above the solid-state thermal decomposition point of AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), which is ca. 185 °C. Similar growth rates, resistivities, and film compositions were observed in ALD film growth trials using AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>). </p>


2020 ◽  
Vol 8 (37) ◽  
pp. 13033-13039
Author(s):  
Harrison Sejoon Kim ◽  
Su Min Hwang ◽  
Xin Meng ◽  
Young-Chul Byun ◽  
Yong Chan Jung ◽  
...  

Trisilylamine homolog, tris(disilanyl)amine (TDSA), is introduced as a novel precursor for the deposition of highly etch resistant silicon nitride thin films having a high growth rate at a low temperature (<300 °C) using plasma enhanced ALD process.


2018 ◽  
Vol 282 ◽  
pp. 232-237
Author(s):  
Adam Hinckley ◽  
Anthony Muscat

Atomic layer deposition (ALD) was used to grow titanium nitride (TiN) on SiO2with TiCl4and N2H4. X-ray photoelectron spectroscopy (XPS) and ellipsometry were used to characterize film growth. A hydrogen-terminated Si (Si-H) surface was used as a reference to understand the reaction steps on SPM cleaned SiO2. The growth rate of TiN at 573 K doubled on Si-H compared to SiO2because of the formation of Si-N bonds. When the temperature was raised to 623 K, O transferred from Ti to Si to form Si-N when exposed to N2H4. Oxygen and Ti could be removed at 623 K by TiCl4producing volatile species. The added surface reactions reduce the Cl in the film below detection limits.


Sign in / Sign up

Export Citation Format

Share Document