Atomic Layer Deposition of TiN below 600 K Using N2H4

2018 ◽  
Vol 282 ◽  
pp. 232-237
Author(s):  
Adam Hinckley ◽  
Anthony Muscat

Atomic layer deposition (ALD) was used to grow titanium nitride (TiN) on SiO2with TiCl4and N2H4. X-ray photoelectron spectroscopy (XPS) and ellipsometry were used to characterize film growth. A hydrogen-terminated Si (Si-H) surface was used as a reference to understand the reaction steps on SPM cleaned SiO2. The growth rate of TiN at 573 K doubled on Si-H compared to SiO2because of the formation of Si-N bonds. When the temperature was raised to 623 K, O transferred from Ti to Si to form Si-N when exposed to N2H4. Oxygen and Ti could be removed at 623 K by TiCl4producing volatile species. The added surface reactions reduce the Cl in the film below detection limits.

2013 ◽  
Vol 4 ◽  
pp. 732-742 ◽  
Author(s):  
Jörg Haeberle ◽  
Karsten Henkel ◽  
Hassan Gargouri ◽  
Franziska Naumann ◽  
Bernd Gruska ◽  
...  

We report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt) and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate) over 4” wafers and correlate them to X-ray photoelectron spectroscopy (XPS) results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.


2018 ◽  
Author(s):  
Kyle J. Blakeney ◽  
Philip D. Martin ◽  
Charles H. Winter

<p>Aluminum dihydride complexes containing amido-amine ligands were synthesized and evaluated as potential reducing precursors for thermal atomic layer deposition (ALD). Highly volatile monomeric complexes AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>) are more thermally stable than common Al hydride thin film precursors such as AlH<sub>3</sub>(NMe<sub>3</sub>). ALD film growth experiments using TiCl<sub>4</sub> and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) produced titanium carbonitride films with a high growth rate of 1.6-2.0 Å/cycle and resistivities around 600 μΩ·cm within a very wide ALD window of 220-400 °C. Importantly, film growth proceeded via self-limited surface reactions, which is the hallmark of an ALD process. Root mean square surface roughness was only 1.3 % of the film thickness at 300 °C by atomic force microscopy. The films were polycrystalline with low intensity, broad reflections corresponding to the cubic TiN/TiC phase according to grazing incidence X-ray diffraction. Film composition by X-ray photoelectron spectroscopy was approximately TiC<sub>0.8</sub>N<sub>0.5</sub> at 300 °C with small amounts of Al (6 at%), Cl (4 at%) and O (4 at%) impurities. Remarkably, self-limited growth and low Al content was observed in films deposited well above the solid-state thermal decomposition point of AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), which is ca. 185 °C. Similar growth rates, resistivities, and film compositions were observed in ALD film growth trials using AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>). </p>


2018 ◽  
Author(s):  
Kyle J. Blakeney ◽  
Philip D. Martin ◽  
Charles H. Winter

<p>Aluminum dihydride complexes containing amido-amine ligands were synthesized and evaluated as potential reducing precursors for thermal atomic layer deposition (ALD). Highly volatile monomeric complexes AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>) are more thermally stable than common Al hydride thin film precursors such as AlH<sub>3</sub>(NMe<sub>3</sub>). ALD film growth experiments using TiCl<sub>4</sub> and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) produced titanium carbonitride films with a high growth rate of 1.6-2.0 Å/cycle and resistivities around 600 μΩ·cm within a very wide ALD window of 220-400 °C. Importantly, film growth proceeded via self-limited surface reactions, which is the hallmark of an ALD process. Root mean square surface roughness was only 1.3 % of the film thickness at 300 °C by atomic force microscopy. The films were polycrystalline with low intensity, broad reflections corresponding to the cubic TiN/TiC phase according to grazing incidence X-ray diffraction. Film composition by X-ray photoelectron spectroscopy was approximately TiC<sub>0.8</sub>N<sub>0.5</sub> at 300 °C with small amounts of Al (6 at%), Cl (4 at%) and O (4 at%) impurities. Remarkably, self-limited growth and low Al content was observed in films deposited well above the solid-state thermal decomposition point of AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), which is ca. 185 °C. Similar growth rates, resistivities, and film compositions were observed in ALD film growth trials using AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>). </p>


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5043
Author(s):  
Chia-Hsun Hsu ◽  
Xin-Peng Geng ◽  
Wan-Yu Wu ◽  
Ming-Jie Zhao ◽  
Xiao-Ying Zhang ◽  
...  

In this study, aluminum-doped zinc oxide (Al:ZnO) thin films were grown by high-speed atmospheric atomic layer deposition (AALD), and the effects of air annealing on film properties are investigated. The experimental results show that the thermal annealing can significantly reduce the amount of oxygen vacancies defects as evidenced by X-ray photoelectron spectroscopy spectra due to the in-diffusion of oxygen from air to the films. As shown by X-ray diffraction, the annealing repairs the crystalline structure and releases the stress. The absorption coefficient of the films increases with the annealing temperature due to the increased density. The annealing temperature reaching 600 °C leads to relatively significant changes in grain size and band gap. From the results of band gap and Hall-effect measurements, the annealing temperature lower than 600 °C reduces the oxygen vacancies defects acting as shallow donors, while it is suspected that the annealing temperature higher than 600 °C can further remove the oxygen defects introduced mid-gap states.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1987 ◽  
Author(s):  
Mykola Pavlenko ◽  
Valerii Myndrul ◽  
Gloria Gottardi ◽  
Emerson Coy ◽  
Mariusz Jancelewicz ◽  
...  

In the current research, a porous silicon/zinc oxide (PSi/ZnO) nanocomposite produced by a combination of metal-assisted chemical etching (MACE) and atomic layer deposition (ALD) methods is presented. The applicability of the composite for biophotonics (optical biosensing) was investigated. To characterize the structural and optical properties of the produced PSi/ZnO nanocomposites, several studies were performed: scanning and transmission electron microscopy (SEM/TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance, and photoluminescence (PL). It was found that the ALD ZnO layer fully covers the PSi, and it possesses a polycrystalline wurtzite structure. The effect of the number of ALD cycles and the type of Si doping on the optical properties of nanocomposites was determined. PL measurements showed a “shoulder-shape” emission in the visible range. The mechanisms of the observed PL were discussed. It was demonstrated that the improved PL performance of the PSi/ZnO nanocomposites could be used for implementation in optical biosensor applications. Furthermore, the produced PSi/ZnO nanocomposite was tested for optical/PL biosensing towards mycotoxins (Aflatoxin B1) detection, confirming the applicability of the nanocomposites.


2011 ◽  
Vol 11 (2) ◽  
pp. 1577-1580 ◽  
Author(s):  
Yong Jun Park ◽  
Dong Ryeol Lee ◽  
Hyun Hwi Lee ◽  
Han-Bo-Ram Lee ◽  
Hyungjun Kim ◽  
...  

2017 ◽  
Vol 727 ◽  
pp. 907-914
Author(s):  
Wen Hui Tang ◽  
Yi Jia ◽  
Bo Cheng Zhang ◽  
Chang Wei Yang ◽  
You Zhi Qu ◽  
...  

Polycrystalline GaN thin films were successfully grown at low temperature (250 °C) by plasma-enhanced atomic layer deposition with NH3, N2, N2/H2 gas mixture and trimethylgallium (TMG) as precusor. The growth rate, crystal structure, surface composition and the valence state of the corresponding element of the GaN thin films using different nitrogen sources were characterized and examined systematically via the spectroscopic ellipsometry, the x-ray diffractometer, the x-ray photoel-ectron spectrometer. It is showed that all the GaN thin films using different nitrogen sources were polycrystalline structure and the preffered orientation were mainly (100). The films using N2 and N2/H2 gas mixture had a higher crystal quality than films using NH3. The GPC (growth rate per cycle) would increase with the increase of the N2 flow rate. The films using a suitable ratio of N2/H2 flow rate had not only a high GPC but a good crystal quality. The ratios of Ga/N element of the films using N2/H2 gas mixture were approximated to 1:1, it would increase with the ratio of the N2/H2 flow rate in the gas mixture, which is showing much effect of the ratios of N2/H2 flow rate on the nitrogen content of the thin films.


2013 ◽  
Vol 2 (10) ◽  
pp. P91-P93 ◽  
Author(s):  
J. R. Kim ◽  
H. Lim ◽  
S. Park ◽  
Y. J. Choi ◽  
S. Suh ◽  
...  

2009 ◽  
Vol 1155 ◽  
Author(s):  
Theodosia Gougousi ◽  
John W. Lacis ◽  
Justin C Hackley ◽  
John Demaree

AbstractAtomic Layer Deposition is used to deposit HfO2 and TiO2 films on GaAs (100) native oxides and etched surfaces. For the deposition of HfO2 films two different but similar ALD chemistries are used: i) tetrakis dimethyl amido hafnium (TDMAHf) and H2O at 275°C and ii) tetrakis ethylmethyl amido hafnium (TEMAHf) and H2O at 250°C. TiO2 films are deposited from tetrakis dimethyl amido titanium (TDMATi) and H2O at 200°C. Rutherford Back Scattering shows linear film growth for all processes. The film/substrate interface is examined using x-ray Photoelectron Spectroscopy and confirms the presence of an “interfacial cleaning” mechanism.


Sign in / Sign up

Export Citation Format

Share Document