scholarly journals Differential Effects of Alpha 1-Adrenoceptor Antagonists on the Postsynaptic Sensitivity: Using Slice Patch-Clamp Technique for Inhibitory Postsynaptic Current in Substantia Gelatinosa Neurons From Lumbosacral Spinal Cord in Rats

2020 ◽  
Vol 24 (2) ◽  
pp. 127-134
Author(s):  
Daisuke Uta ◽  
Tsuyoshi Hattori ◽  
Megumu Yoshimura

Purpose: Alpha1-adrenoceptors participate in improving storage symptoms of male lower urinary tract symptoms. However, the mechanism of action of these compounds remains unclear. The goal of the present study was to clarify the effect of α1- adrenoceptor antagonists on γ-aminobutyric acid (GABA)/glycine-mediated outward currents of the inhibitory postsynaptic current (IPSC) in substantia gelatinosa (SG) neurons from the lumbosacral spinal cord in rats.Methods: Male adult Sprague-Dawley rats were used. Blind whole-cell patch-clamp recordings were performed in SG neurons from isolated spinal cord slice preparations. IPSCs were recorded in individual SG neurons to which naftopidil (100μM), tamsulosin (100μM), silodosin (30μM), or prazosin (10μM) were applied sequentially with intervening washout periods. Strychnine (2μM), bicuculline (10μM), or tetrodotoxin (TTX)(1μM) were added before naftopidil. Individual outward currents were analyzed.Results: The bath application of naftopidil, yielded outward IPSCs in 13 of 52 SG neurons. The naftopidil response was unchanged in the presence of TTX. Regression analysis of the outward currents between the 1st and 2nd applications of naftopidil revealed a Pearson correlation coefficient of 0.996 with a line slope of 0.983. The naftopidil-induced outward current was attenuated in the presence of strychnine and/or bicuculline. The GABA/glycine-mediated outward currents induced by tamsulosin, silodosin, and prazosin were smaller than those obtained with naftopidil.Conclusions: Naftopidil-induced GABA/glycine-mediated outward currents in a subset of SG neurons prepared from the L6– S1 level of rat spinal cord. The results indicated that α1-adrenoceptor antagonists, particularly naftopidil, induce neural suppression (in part) by mediating hyperpolarization. The response is associated with glycinergic and/or GABAergic neural transmission. Naftopidil may suppress the micturition reflex and improve urinary storage symptoms as a subsidiary effect resulting from hyperpolarization in SG neurons of the spinal cord.

2020 ◽  
Vol 24 (2) ◽  
pp. 135-143
Author(s):  
Daisuke Uta ◽  
Tsuyoshi Hattori ◽  
Megumu Yoshimura

Purpose: Alpha1-adrenoceptors participate in improving storage symptoms of male lower urinary tract symptoms (LUTS). However, the mechanism of action of these compounds remains unclear. To clarify the mechanism of the α1-adrenoceptor antagonists, the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was analyzed in the lumbosacral spinal cord in rats.Methods: Male adult Sprague-Dawley rats were used. Blind whole-cell patch-clamp recordings were performed on substantia gelatinosa (SG) neurons in spinal cord slice preparations. The amplitude of mEPSCs was recorded in individual SG neurons to which α1-adrenoceptors (100μM naftopidil, 100μM tamsulosin, and 30μM silodosin) were applied sequentially with intervening washout periods. Individual amplitudes were analyzed.Results: Pearson correlation coefficients (r) for the amplitudes of mEPSCs between the baseline and postadministration of α1- adrenoceptor antagonists indicated changes of the amplitude ranked in the order of naftopidil (r =0.393), tamsulosin (r=0.738), and silodosin (r=0.944). Together, the α1-adrenoceptor antagonists yielded significant increases in the amplitude of mEPSCs in SG neurons (n=108, P=0.012). However, the effects of each α1-adrenoceptor antagonist on the amplitude were as follows (relative to the baseline; n=36 each): naftopidil, P=0.129; tamsulosin, P=0.201; and silodosin, P=0.005. The rate of response to naftopidil for the outward current was relatively high among the α1-adrenoceptor blockers. An inward current was observed only with the naftopidil application.Conclusions: Alpha1-adrenoceptor antagonists changed the amplitudes of mEPSCs in a subset of SG neurons in slices prepared from the L6–S1 levels of rat spine. Although the α1-adrenoceptor antagonists generated inward or outward currents in the SG neurons, different rates of response were observed with each antagonist. These results are important for understanding the mechanisms of action (at the spinal level) of α1-adrenoceptor antagonists for the storage symptoms of male LUTS.


2011 ◽  
Vol 105 (5) ◽  
pp. 2337-2349 ◽  
Author(s):  
Hai-Yuan Yue ◽  
Tsugumi Fujita ◽  
Eiichi Kumamoto

Although intrathecally administrated galanin modulates nociceptive transmission in a biphasic manner, this has not been fully examined previously. In the present study, the action of galanin on synaptic transmission in the substantia gelatinosa (SG) neurons of adult rat spinal cord slices was examined, using the whole cell patch-clamp technique. Galanin concentration-dependently increased the frequency of spontaneous excitatory postsynaptic current (EPSC; EC50 = 2.0 nM) without changing the amplitude, indicating a presynaptic effect. This effect was reduced in a Ca2+-free, or voltage-gated Ca2+ channel blocker La3+-containing Krebs solution and was produced by a galanin type-2/3 receptor (GalR2/R3) agonist, galanin 2–11, but not by a galanin type-1 receptor (GalR1) agonist, M617. Galanin also concentration-dependently produced an outward current at −70 mV (EC50 = 44 nM), although this appeared to be contaminated by a small inward current. This outward current was mimicked by M617, but not by galanin 2–11. Moreover, galanin reduced monosynaptic Aδ-fiber- and C-fiber-evoked EPSC amplitude; the former reduction was larger than the latter. A similar action was produced by galanin 2–11, but not by M617. Spontaneous and focally evoked inhibitory (GABAergic and glycinergic) transmission was unaffected by galanin. These findings indicate that galanin at lower concentrations enhances the spontaneous release of l-glutamate from nerve terminals by Ca2+ entry from the external solution following GalR2/R3 activation, whereas galanin at higher concentrations also produces a membrane hyperpolarization by activating GalR1. Moreover, galanin reduces l-glutamate release onto SG neurons from primary afferent fibers by activating GalR2/R3. These effects could partially contribute to the behavioral effect of galanin.


2000 ◽  
Vol 92 (2) ◽  
pp. 485-485 ◽  
Author(s):  
Hiroshi Baba ◽  
Peter A. Goldstein ◽  
Manabu Okamoto ◽  
Tatsuro Kohno ◽  
Toyofumi Ataka ◽  
...  

Background It has been reported previously that norepinephrine, when applied to the spinal cord dorsal horn, excites a subpopulation of dorsal horn neurons, presumably inhibitory interneurons. In the current study, the authors tested whether norepinephrine could activate inhibitory interneurons, specifically those that are "GABAergic." Methods A transverse slice was obtained from a segment of the lumbar spinal cord isolated from adult male Sprague-Dawley rats. Whole-cell patch-clamp recordings were made from substantia gelatinosa neurons using the blind patch-clamp technique. The effects of norepinephrine on spontaneous GABAergic inhibitory postsynaptic currents were studied. Results In the majority of substantia gelatinosa neurons tested, norepinephrine (10-60 microM) significantly increased both the frequency and the amplitude of GABAergic inhibitory postsynaptic currents. These increases were blocked by tetrodotoxin (1 microM). The effects of norepinephrine were mimicked by the alpha1-receptor agonist phenylephrine (10-80 microM) and inhibited by the alpha1-receptor-antagonist WB-4101 (0.5 microM). Primary-afferent-evoked polysynaptic excitatory postsynaptic potentials or excitatory postsynaptic currents in wide-dynamic-range neurons of the deep dorsal horn were also attenuated by phenylephrine (40 microM). Conclusion The observations suggest that GABAergic interneurons possess somatodendritic alpha1 receptors, and activation of these receptors excites inhibitory interneurons. The alpha1 actions reported herein may contribute to the analgesic action of intrathecally administered phenylephrine.


1994 ◽  
Vol 266 (1) ◽  
pp. H182-H190 ◽  
Author(s):  
A. Ogbaghebriel ◽  
A. Shrier

Outward currents were measured in single rabbit atrial myocytes using the whole cell configuration of the patch-clamp technique in the presence of tetrodotoxin (5–10 microM) and MnCl2 (2 mM) to block inward currents. Depolarizing voltage-clamp steps from a holding potential of -80 mV elicited a predominant 4-aminopyridine (4-AP)-sensitive transient outward current (Ito). Inhibitors of oxidative metabolism, 2,4-dinitrophenol (DNP; 100 microM) and cyanide (3 mM) abolished Ito and caused a large increase in the steady-state outward current. This steady-state outward current was inhibited by glibenclamide (5 microM), a blocker of the ATP-regulated potassium current (IKATP). In the presence of DNP, glibenclamide (5 microM) not only inhibited IKATP but also partially restored Ito. Absence of ATP from the pipette produced effects on outward currents similar to those induced by DNP or cyanide. We conclude that metabolic inhibition abolishes Ito in rabbit atrial myocytes and suggest that ATP may be required for the activation of the channel.


1996 ◽  
Vol 270 (6) ◽  
pp. G932-G938 ◽  
Author(s):  
J. Jury ◽  
K. R. Boev ◽  
E. E. Daniel

Single smooth muscle cells from the opossum body circular muscle were isolated and whole cell currents were characterized by the whole cell patch-clamp technique. When the cells were held at -50 mV and depolarized to 70 mV in 20-mV increments, initial small inactivating inward currents were evoked (-30 to 30 mV) followed by larger sustained outward currents. Depolarization from a holding potential of -90 mV evoked an initial fast inactivating outward current sensitive to 4-aminopyridine but not to high levels of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). The outward currents reversed near K+ equilibrium potential and were abolished when KCl was replaced by CsCl in the pipette solution. The sustained outward current was inhibited by quinine and cesium. High EGTA in the pipette solution reduced but did not abolish the sustained outward currents, suggesting that both Ca(2+)-dependent and -independent currents were evoked. The nitric oxide (NO)-releasing agents Sin-1 and sodium nitroprusside increased outward K+ currents. High levels of EGTA in the pipette solution abolished the increase in outward current induced by Sin-1. The presence of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ pump, blocked the effects of NO-releasing agents. We conclude that NO release activates K+ outward currents in opossum esophagus circular muscle, which may depend on Ca2+ release from the SR stores.


2021 ◽  
Vol 13 ◽  
Author(s):  
Yang Li ◽  
Shanchu Su ◽  
Jiaqi Yu ◽  
Minjing Peng ◽  
Shengjun Wan ◽  
...  

A patch-clamp recording in slices generated from the brain or the spinal cord has facilitated the exploration of neuronal circuits and the molecular mechanisms underlying neurological disorders. However, the rodents that are used to generate the spinal cord slices in previous studies involving a patch-clamp recording have been limited to those in the juvenile or adolescent stage. Here, we applied an N-methyl-D-glucamine HCl (NMDG-HCl) solution that enabled the patch-clamp recordings to be performed on the superficial dorsal horn neurons in the slices derived from middle-aged rats. The success rate of stable recordings from substantia gelatinosa (SG) neurons was 34.6% (90/260). When stimulated with long current pulses, 43.3% (39/90) of the neurons presented a tonic-firing pattern, which was considered to represent γ-aminobutyric acid-ergic (GABAergic) signals. Presumptive glutamatergic neurons presented 38.9% (35/90) delayed and 8.3% (7/90) single-spike patterns. The intrinsic membrane properties of both the neuron types were similar but delayed (glutamatergic) neurons appeared to be more excitable as indicated by the decreased latency and rheobase values of the action potential compared with those of tonic (GABAergic) neurons. Furthermore, the glutamatergic neurons were integrated, which receive more excitatory synaptic transmission. We demonstrated that the NMDG-HCl cutting solution could be used to prepare the spinal cord slices of middle-aged rodents for the patch-clamp recording. In combination with other techniques, this preparation method might permit the further study of the functions of the spinal cord in the pathological processes that occur in aging-associated diseases.


1997 ◽  
Vol 273 (6) ◽  
pp. C2010-C2021 ◽  
Author(s):  
S. D. Koh ◽  
G. M. Dick ◽  
K. M. Sanders

The patch-clamp technique was used to determine the ionic conductances activated by ATP in murine colonic smooth muscle cells. Extracellular ATP, UTP, and 2-methylthioadenosine 5′-triphosphate (2-MeS-ATP) increased outward currents in cells with amphotericin B-perforated patches. ATP (0.5–1 mM) did not affect whole cell currents of cells dialyzed with solutions containing ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid. Apamin (3 × 10−7M) reduced the outward current activated by ATP by 32 ± 5%. Single channel recordings from cell-attached patches showed that ATP, UTP, and 2-MeS-ATP increased the open probability of small-conductance, Ca2+-dependent K+ channels with a slope conductance of 5.3 ± 0.02 pS. Caffeine (500 μM) enhanced the open probability of the small-conductance K+ channels, and ATP had no effect after caffeine. Pyridoxal phosphate 6-azophenyl-2′,4′-disulfonic acid tetrasodium (PPADS, 10−4 M), a nonselective P2 receptor antagonist, prevented the increase in open probability caused by ATP and 2-MeS-ATP. PPADS had no effect on the response to caffeine. ATP-induced hyperpolarization in the murine colon may be mediated by P2y-induced release of Ca2+ from intracellular stores and activation of the 5.3-pS Ca2+-activated K+ channels.


2020 ◽  
Vol 21 (14) ◽  
pp. 4876
Author(s):  
Zbigniew Burdach ◽  
Agnieszka Siemieniuk ◽  
Waldemar Karcz

In contrast to the well-studied effect of auxin on the plasma membrane K+ channel activity, little is known about the role of this hormone in regulating the vacuolar K+ channels. Here, the patch-clamp technique was used to investigate the effect of auxin (IAA) on the fast-activating vacuolar (FV) channels. It was found that the macroscopic currents displayed instantaneous currents, which at the positive potentials were about three-fold greater compared to the one at the negative potentials. When auxin was added to the bath solution at a final concentration of 1 µM, it increased the outward currents by about 60%, but did not change the inward currents. The imposition of a ten-fold vacuole-to-cytosol KCl gradient stimulated the efflux of K+ from the vacuole into the cytosol and reduced the K+ current in the opposite direction. The addition of IAA to the bath solution with the 10/100 KCl gradient decreased the outward current and increased the inward current. Luminal auxin reduced both the outward and inward current by approximately 25% compared to the control. The single channel recordings demonstrated that cytosolic auxin changed the open probability of the FV channels at the positive voltages to a moderate extent, while it significantly increased the amplitudes of the single channel outward currents and the number of open channels. At the positive voltages, auxin did not change the unitary conductance of the single channels. We suggest that auxin regulates the activity of the fast-activating vacuolar (FV) channels, thereby causing changes of the K+ fluxes across the vacuolar membrane. This mechanism might serve to tightly adjust the volume of the vacuole during plant cell expansion.


1990 ◽  
Vol 63 (4) ◽  
pp. 725-737 ◽  
Author(s):  
S. K. Florio ◽  
C. D. Westbrook ◽  
M. R. Vasko ◽  
R. J. Bauer ◽  
J. L. Kenyon

1. We used the patch-clamp technique to study voltage-activated transient potassium currents in freshly dispersed and cultured chick dorsal root ganglion (DRG) cells. Whole-cell and cell-attached patch currents were recorded under conditions appropriate for recording potassium currents. 2. In whole-cell experiments, 100-ms depolarizations from normal resting potentials (-50 to -70 mV) elicited sustained outward currents that inactivated over a time scale of seconds. We attribute this behavior to a component of delayed rectifier current. After conditioning hyperpolarizations to potentials negative to -80 mV, depolarizations elicited transient outward current components that inactivated with time constants in the range of 8-26 ms. We attribute this behavior to a transient outward current component. 3. Conditioning hyperpolarizations increased the rate of activation of the net outward current implying that the removal of inactivation of the transient outward current allows it to contribute to early outward current during depolarizations from negative potentials. 4. Transient current was more prominent on the day the cells were dispersed and decreased with time in culture. 5. In cell-attached patches, single channels mediating outward currents were observed that were inactive at resting potentials but were active transiently during depolarizations to potentials positive to -30 mV. The probability of channels being open increased rapidly (peaking within approximately 6 ms) and then declined with a time constant in the range of 13-30 ms. With sodium as the main extracellular cation, single-channel conductances ranged from 18 to 32 pS. With potassium as the main extracellular cation, the single-channel conductance was approximately 43 pS, and the channel current reversed near 0 mV, as expected for a potassium current. 6. We conclude that the transient potassium channels mediate the component of transient outward current seen in the whole-cell experiments. This current is a relatively small component of the net current during depolarizations from normal resting potentials, but it can contribute significant outward current early in depolarizations from hyperpolarized potentials.


2008 ◽  
Vol 99 (3) ◽  
pp. 1274-1284 ◽  
Author(s):  
Tao Liu ◽  
Tsugumi Fujita ◽  
Terumasa Nakatsuka ◽  
Eiichi Kumamoto

Phospholipase A2 (PLA2) activation enhances glutamatergic excitatory synaptic transmission in substantia gelatinosa (SG) neurons, which play a pivotal role in regulating nociceptive transmission in the spinal cord. By using melittin as a tool to activate PLA2, we examined the effect of PLA2 activation on spontaneous inhibitory postsynaptic currents (sIPSCs) recorded at 0 mV in SG neurons of adult rat spinal cord slices by use of the whole cell patch-clamp technique. Melittin enhanced the frequency and amplitude of GABAergic and glycinergic sIPSCs. The enhancement of GABAergic but not glycinergic transmission was largely depressed by Na+ channel blocker tetrodotoxin or glutamate-receptor antagonists (6-cyano-7-nitroquinoxaline-2,3-dione and/or dl-2-amino-5-phosphonovaleric acid) and also in a Ca2+-free Krebs solution. The effects of melittin on glycinergic sIPSC frequency and amplitude were dose-dependent with an effective concentration of ∼0.7 μM for half-maximal effect and were depressed by PLA2 inhibitor 4-bromophenacyl bromide or aristolochic acid. The melittin-induced enhancement of glycinergic transmission was depressed by lipoxygenase inhibitor nordihydroguaiaretic acid but not cyclooxygenase inhibitor indomethacin. These results indicate that the activation of PLA2 in the SG enhances GABAergic and glycinergic inhibitory transmission in SG neurons. The former action is mediated by glutamate-receptor activation and neuronal activity increase, possibly the facilitatory effect of PLA2 activation on excitatory transmission, whereas the latter action is due to PLA2 and subsequent lipoxygenase activation and is independent of extracellular Ca2+. It is suggested that PLA2 activation in the SG could enhance not only excitatory but also inhibitory transmission, resulting in the modulation of nociception.


Sign in / Sign up

Export Citation Format

Share Document