scholarly journals An Intelligent System for Motor Style Assessment and Training from Inertial Sensor Data in Intermediate Level Ski Jumping

Author(s):  
Heike Brock ◽  
Yuji Ohgi
2020 ◽  
Vol 53 (2) ◽  
pp. 15990-15997
Author(s):  
Felix Laufer ◽  
Michael Lorenz ◽  
Bertram Taetz ◽  
Gabriele Bleser

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew P. Creagh ◽  
Florian Lipsmeier ◽  
Michael Lindemann ◽  
Maarten De Vos

AbstractThe emergence of digital technologies such as smartphones in healthcare applications have demonstrated the possibility of developing rich, continuous, and objective measures of multiple sclerosis (MS) disability that can be administered remotely and out-of-clinic. Deep Convolutional Neural Networks (DCNN) may capture a richer representation of healthy and MS-related ambulatory characteristics from the raw smartphone-based inertial sensor data than standard feature-based methodologies. To overcome the typical limitations associated with remotely generated health data, such as low subject numbers, sparsity, and heterogeneous data, a transfer learning (TL) model from similar large open-source datasets was proposed. Our TL framework leveraged the ambulatory information learned on human activity recognition (HAR) tasks collected from wearable smartphone sensor data. It was demonstrated that fine-tuning TL DCNN HAR models towards MS disease recognition tasks outperformed previous Support Vector Machine (SVM) feature-based methods, as well as DCNN models trained end-to-end, by upwards of 8–15%. A lack of transparency of “black-box” deep networks remains one of the largest stumbling blocks to the wider acceptance of deep learning for clinical applications. Ensuing work therefore aimed to visualise DCNN decisions attributed by relevance heatmaps using Layer-Wise Relevance Propagation (LRP). Through the LRP framework, the patterns captured from smartphone-based inertial sensor data that were reflective of those who are healthy versus people with MS (PwMS) could begin to be established and understood. Interpretations suggested that cadence-based measures, gait speed, and ambulation-related signal perturbations were distinct characteristics that distinguished MS disability from healthy participants. Robust and interpretable outcomes, generated from high-frequency out-of-clinic assessments, could greatly augment the current in-clinic assessment picture for PwMS, to inform better disease management techniques, and enable the development of better therapeutic interventions.


2021 ◽  
Vol 185 ◽  
pp. 282-291
Author(s):  
Nizam U. Ahamed ◽  
Kellen T. Krajewski ◽  
Camille C. Johnson ◽  
Adam J. Sterczala ◽  
Julie P. Greeves ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2480
Author(s):  
Isidoro Ruiz-García ◽  
Ismael Navarro-Marchal ◽  
Javier Ocaña-Wilhelmi ◽  
Alberto J. Palma ◽  
Pablo J. Gómez-López ◽  
...  

In skiing it is important to know how the skier accelerates and inclines the skis during the turn to avoid injuries and improve technique. The purpose of this pilot study with three participants was to develop and evaluate a compact, wireless, and low-cost system for detecting the inclination and acceleration of skis in the field based on inertial measurement units (IMU). To that end, a commercial IMU board was placed on each ski behind the skier boot. With the use of an attitude and heading reference system algorithm included in the sensor board, the orientation and attitude data of the skis were obtained (roll, pitch, and yaw) by IMU sensor data fusion. Results demonstrate that the proposed IMU-based system can provide reliable low-drifted data up to 11 min of continuous usage in the worst case. Inertial angle data from the IMU-based system were compared with the data collected by a video-based 3D-kinematic reference system to evaluate its operation in terms of data correlation and system performance. Correlation coefficients between 0.889 (roll) and 0.991 (yaw) were obtained. Mean biases from −1.13° (roll) to 0.44° (yaw) and 95% limits of agreements from 2.87° (yaw) to 6.27° (roll) were calculated for the 1-min trials. Although low mean biases were achieved, some limitations arose in the system precision for pitch and roll estimations that could be due to the low sampling rate allowed by the sensor data fusion algorithm and the initial zeroing of the gyroscope.


2011 ◽  
Vol 467-469 ◽  
pp. 108-113
Author(s):  
Xin Yu Li ◽  
Dong Yi Chen

Accurate tracking for Augmented Reality applications is a challenging task. Multi-sensors hybrid tracking generally provide more stable than the effect of the single visual tracking. This paper presents a new tightly-coupled hybrid tracking approach combining vision-based systems with inertial sensor. Based on multi-frequency sampling theory in the measurement data synchronization, a strong tracking filter (STF) is used to smooth sensor data and estimate position and orientation. Through adding time-varying fading factor to adaptively adjust the prediction error covariance of filter, this method improves the performance of tracking for fast moving targets. Experimental results show the efficiency and robustness of this proposed approach.


2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668368 ◽  
Author(s):  
Charissa Ann Ronao ◽  
Sung-Bae Cho

Human activity recognition has been gaining more and more attention from researchers in recent years, particularly with the use of widespread and commercially available devices such as smartphones. However, most of the existing works focus on discriminative classifiers while neglecting the inherent time-series and continuous characteristics of sensor data. To address this, we propose a two-stage continuous hidden Markov model framework, which also takes advantage of the innate hierarchical structure of basic activities. This kind of system architecture not only enables the use of different feature subsets on different subclasses, which effectively reduces feature computation overhead, but also allows for varying number of states and iterations. Experiments show that the hierarchical structure dramatically increases classification performance. We analyze the behavior of the accelerometer and gyroscope signals for each activity through graphs, and with added fine tuning of states and training iterations, the proposed method is able to achieve an overall accuracy of up to 93.18%, which is the best performance among the state-of-the-art classifiers for the problem at hand.


2020 ◽  
Vol 11 (4) ◽  
pp. 57-71
Author(s):  
Qiuxia Liu

Using multi-sensor data fusion technology, ARM technology, ZigBee technology, GPRS, and other technologies, an intelligent environmental monitoring system is studied and developed. The SCM STC12C5A60S2 is used to collect the main environmental parameters in real time intelligently. The collected data is transmitted to the central controller LPC2138 through the ZigBee module ATZGB-780S5, and then the collected data is transmitted to the management computer through the GPRS communication module SIM300; thus, the real-time processing and intelligent monitoring of the environmental parameters are realized. The structure of the system is optimized; the suitable fusion model of environmental monitoring parameters is established; the hardware and the software of the intelligent system are completed. Each sensor is set up synchronously at the end of environmental parameter acquisition. The method of different value detection is used to filter out different values. The authors obtain the reliability of the sensor through the application of the analytic hierarchy process. In the analysis and processing of parameters, they proposed a new data fusion algorithm by using the reliability, probability association algorithm, and evidence synthesis algorithm. Through this algorithm, the accuracy of environmental monitoring data and the accuracy of judging monitoring data are greatly improved.


Sign in / Sign up

Export Citation Format

Share Document