scholarly journals TEdit: A Distributed Tetrahedral Mesh Editor with Immediate Simulation Feedback

Author(s):  
D. Ströter ◽  
U. Krispel ◽  
J. Mueller-Roemer ◽  
D. Fellner
2021 ◽  
Author(s):  
D. Ströter ◽  
U. Krispel ◽  
J. Mueller-Roemer ◽  
D. Fellner

Author(s):  
Dennis R. Bukenberger ◽  
Hendrik P. A. Lensch

Abstract We propose concepts to utilize basic mathematical principles for computing the exact mass properties of objects with varying densities. For objects given as 3D triangle meshes, the method is analytically accurate and at the same time faster than any established approximation method. Our concept is based on tetrahedra as underlying primitives, which allows for the object’s actual mesh surface to be incorporated in the computation. The density within a tetrahedron is allowed to vary linearly, i.e., arbitrary density fields can be approximated by specifying the density at all vertices of a tetrahedral mesh. Involved integrals are formulated in closed form and can be evaluated by simple, easily parallelized, vector-matrix multiplications. The ability to compute exact masses and centroids for objects of varying density enables novel or more exact solutions to several interesting problems: besides the accurate analysis of objects under given density fields, this includes the synthesis of parameterized density functions for the make-it-stand challenge or manufacturing of objects with controlled rotational inertia. In addition, based on the tetrahedralization of Voronoi cells we introduce a precise method to solve $$L_{2|\infty }$$ L 2 | ∞ Lloyd relaxations by exact integration of the Chebyshev norm. In the context of additive manufacturing research, objects of varying density are a prominent topic. However, current state-of-the-art algorithms are still based on voxelizations, which produce rather crude approximations of masses and mass centers of 3D objects. Many existing frameworks will benefit by replacing approximations with fast and exact calculations. Graphic abstract


2021 ◽  
pp. 1-16
Author(s):  
Dan Luo ◽  
Yu Zhang ◽  
Jia Li ◽  
Jisheng Li

Virtual surgery robot can accurately modeling of surgical instruments and human organs, and realistic simulation of various surgical phenomena such as deformation of organic tissues, surgery simulation system can provide operators with reusable virtual training and simulation environment. To meet the requirement of virtual surgery robot for the authenticity and real-time of soft tissue deformation and surgical simulation in liver surgery, a new method is proposed to simulate the deformation of soft tissue. This method combines the spring force, the external force of the system, and the constraint force produced by the constraint function of the position-based dynamics. Based on the position-based dynamics, an improved three-parameter mass-spring model is added. In the calculation of the elastic force, the nonlinearity and viscoelasticity of the soft tissue are introduced, and the joint force of the constraint projection process and the constraint force of the position-based dynamics is used to modify mass points movement. The method of position-based dynamics based on biological characteristics, not only considers the biomechanical properties of biological soft tissue as an organic polymer such as viscoelasticity, nonlinearity, and incompressibility but also retains the rapidity and stability of the position based dynamic method. Through the simulation data, the optimal side length of tetrahedral mesh in the improved three-parameter model is obtained, and the physical properties of the model are proved. The real-time simulation of the liver and other organs is completed by using the Geomagic touch force feedback device, which proves the practicability and effectiveness of this method.


CFD letters ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 13-27
Author(s):  
Mohamad Lutfi Samsudin ◽  
Hasril Hasini

Meshing of domain in CFD is an important step to ensure accuracy of the solution. In the past, hexahedral or tetrahedral mesh systems were commonly used, and both have their merits and demerits. For large and complex geometry, polyhedral is another option but its accuracy is claimed to be lacking. In this paper, the use of polyhedral mesh system by past researchers are reviewed. Evaluation on the application of polyhedral mesh system for the study of the vortex formation with a simple single pump sump model is made. Validation was made through the comparison of the results from hexahedral, tetrahedral and polyhedral mesh sizes and the experimental data from published data. The polyhedral mesh system was found to perform satisfactorily and was able to match the results from the hexahedral mesh system as well as the experimental data.


2021 ◽  
Author(s):  
S. Paccati ◽  
L. Mazzei ◽  
A. Andreini ◽  
S. Patil ◽  
S. Shrivastava ◽  
...  

Abstract Due to the increasingly stringent international limitations in terms of NOx emissions, the development of new combustor concepts has become extremely important in order for aircraft engines to comply with these regulations. In this framework, lean-burn technology represents a promising solution and several studies and emission data from production engines have proven that it is more promising in reducing NOx emissions than rich-burn technology. Considering the drawbacks of this combustion strategy (flame stabilization, flashback or blowout or the occurrence of large pressure fluctuations causing thermo-acoustics phenomena) as well as the difficulties and the high costs related to experimental campaigns at relevant operating conditions, Computational Fluid Dynamics (CFD) plays a key role in deepening understanding of the complex phenomena that are involved in such reactive conditions. During last years, large research efforts have been devoted to develop new advanced numerical strategies for high-fidelity predictions in simulating reactive flows that feature strong unsteadiness and high levels of turbulence intensity with affordable computational resources. In this sense, hybrid RANS-LES models represent a good compromise between accurate prediction of flame behaviour and computational cost with respect to fully-LES approaches. Stress-Blended Eddy Simulation (SBES) is a new global hybrid RANS-LES methodology which ensures an improved shielding of RANS boundary layers and a more rapid RANS-LES “transition” compared to other hybrid RANS-LES formulations. In the present work, a full annular aeronautical lean-burn combustor operated at real conditions is investigated from a numerical point of view employing the new SBES approach using poly-hexcore mesh topology, which allows to adopt an isotropic grid for more accurate scale-resolving calculations by means of fully regular hexahedral elements in the main stream. The results are compared to experimental data and to previous reference numerical results obtained with Scale Adaptive Simulation formulation on a tetrahedral mesh grid in order to underline the improvements achieved with the new advanced numerical setup.


2016 ◽  
Vol 2 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Tomasz Moszkowski ◽  
Thilo Krüger ◽  
Werner Kneist ◽  
Klaus-Peter Hoffmann

AbstractFinite element analysis (FEA) of electric current distribution in the pelvis minor may help to assess the usability of non-invasive surface stimulation for continuous pelvic intraoperative neuromonitoring. FEA requires generation of quality volumetric tetrahedral mesh geometry. This study proposes the generation of a suitable mesh based on MRI data. The resulting volumetric mesh models the autonomous nerve structures at risk during total mesorectal excision. The model also contains the bone, cartilage, fat, skin, muscle tissues of the pelvic region, and a set of electrodes for surface stimulation. The model is ready for finite element analysis of the discrete Maxwell’s equations.


2016 ◽  
Vol 680 ◽  
pp. 82-85
Author(s):  
Jian Cai ◽  
Lan Chen ◽  
Umezuruike Linus Opara

OBJECTIVE To investigate the influence of mesh type on numerical simulating the dispersion performance of micro-powders through a home-made tube. METHODS With the computational fluid dynamics (CFD) method, a powder dispersion tube was meshed in three different types, namely, tetrahedral, unstructured hexahedral and prismatic-tetrahedral hybrid meshes. The inner flow field and the kinetic characteristics of the particles were investigated. Results of the numerical simulation were compared with literature evidences. RESULTS The results showed that using tetrahedral mesh had the highest computational efficiency, while employing the unstructured hexahedral mesh obtained more accurate outlet velocity. The simulation results of the inner flow field and the kinetic characteristics of the particles were slightly different among the three mesh types. The calculated particle velocity using the tetrahedral mesh had the best correlation with the changing trend of the fine particle mass in the first 4 stages of the new generation impactor (NGI) (R2 = 0.91 and 0.89 for powder A and B, respectively). Conclusions Mesh type affected computational time, accuracy of simulation results and the prediction abilities of fine particle deposition.


Sign in / Sign up

Export Citation Format

Share Document