scholarly journals To Determine the Morphological Changes in Red Blood Cells During Storage in Blood Banks

2020 ◽  
Vol 10 (2) ◽  
Author(s):  
SM Tahir ◽  
Wajid Akbar ◽  
Asadullah . ◽  
Usmanullah . ◽  
Usman Ali ◽  
...  

Background: During storage of blood, the red blood cells undergo shape changes which cause fragility and endothelial interaction leading to deterioration the quality of blood in blood banks.Objectives: The aim of this study is to determine the morphological changes in red blood cells during storage in blood banks. Material and Methods: In this experimental study, a total 20 healthy volunteers between 17 to 40 years blood donors-Blood bags were taken, ten from each center i.e. MMCTH blood bank Mardan and KTH blood bank Peshawar. The specimen analysis was done at IBMS (Institute of Basic Medical Sciences) of KMU (Khyber Medical University) Peshawar. The exclusion criteria were People with anemia, hepatitis B &C, HIV and syphilis. The duration of this study was six months. The inform consent was taken from each donor. The total blood 250 ml from vein in cubital fossa from each blood donor was collected in 250ml pediatric blood bag with CPDA-1 solution. Blood bags were put up in the blood bank at +2 to +6 °C and stored till 20 days. Blood specimen of about 5cc were collected in 5cc syringe from each blood bag on 0, 5th,10th ,15th and 20th day for following parameters and thin film red blood cell was prepared for examination by light microscope. Morphological changes in RBCs examined via light microscope as well as grading the RBCs status in the peripheral blood film, the occurrence of distorted RBC simply in random fields; such as +1(scored 1 to 5 altered RBC present in each field), +2 (an average of 6 to 15 altered RBC in each field), +3(16 to 25 altered RBC in each field) and +4(more than 25 altered RBC present in each field). The multi head light microscope NIKON eclipse 50 was used for examination of peripheral blood slide and we took images of randomly selected field. The image J software was used for slide examination.Results: The morphological analysis of red blood cells, count of 200 cells in each blood slide in randomly selected fields are: On day 0 the majority of cells were normally shaped (97.95±1.297 (mean±SD).With increasing storage time, the percentage of morphologically abnormal red cells rose sharply. Mean percentage of abnormal cells on day 5, 10, 15 and 20 was 28.80±10.00, 51.73±12.47, 64.78±14.66 and 68.10±7.92 respectively. This increase in percentage of abnormally shaped cells was significant as determined by one way ANOVA (p =0.001). There was a big difference of percentage of abnormal RBCs on day 0 and in = 5 to= 10 days and in = 15 to = 20 days of blood storage. The mean values of day 0 of abnormal cells was 2.05±1.297 (Mean ± Std. Deviation), abnormal cells in= 5 to= 10 days was 40.26± 16.101 (Mean ± Std. Deviation) and on day = 15 and in = 20 day was 66.44± 11.75. The mean difference from day 0 to day 20 was 63.93±10.45 (Mean ± Std. Deviation).The one way ANOVA was significant, P= 0.001.Conclusion: This study confirms the hematological and morphological changes, when blood stored at 2 °C to 6 °C for up to 21 days. The significant morphological changes were observed on 5th day of blood storage. These findings suggested that approximately a week old stored blood is as good as the fresh blood; however, significant morphological and biochemical changes begin to appear after the first week of storage and these changes aggravate with time. Hence in order to achieve best possible transfusion outcomes, stored blood up to one week can be utilized.

2020 ◽  
Vol 12 (04) ◽  
pp. 244-249
Author(s):  
Ibrahim Mustafa ◽  
Tameem Ali Qaid Hadwan

Abstract Introduction Maintaining blood supply is a challenge in blood banks. Red blood cells (RBCs) stored at 4°C experience issues of biochemical changes due to metabolism of cells, leading to changes collectively referred to as “storage lesions.” Oxidation of the red cell membrane, leading to lysis, contributes to these storage lesions. Methods Blood bags with CPD-SAGM stored at 4°C for 28 days were withdrawn aseptically on days 1, 14, and 28. Hematology analyzer was used to investigate RBC indices. Hemoglobin oxidation was studied through spectrophotometric scan of spectral change. RBC lysis was studied with the help of Drabkin's assay, and morphological changes were observed by light and scan electron microscopy. Results RBCs show progressive changes in morphology echinocytes and spherocytes on day 28. There was 0.85% RBC lysis, an approximately 20% decrease in percentage oxyhemoglobin, and a 14% increase in methemoglobin formation, which shows hemoglobin oxidation on day 28. Conclusions Oxidative damage to RBC, with an increase in storage time was observed in the present study. The observed morphological changes to RBC during the course of increased time shows that there is progressive damage to RBC membrane and a decrease in hemoglobin concentration; percentage RBC lysis is probably due to free hemoglobin and iron.


2013 ◽  
Vol 179 (2) ◽  
pp. 202-203
Author(s):  
K.L. Long ◽  
C.F. Meier ◽  
S.P. Carmichael ◽  
J.G. Woodward ◽  
A.C. Bernard

2020 ◽  
Vol 51 (5) ◽  
pp. 460-468 ◽  
Author(s):  
Irene Pérez ◽  
Maria Elena Redín

Abstract Objectives To analyze the stability of red blood cells, platelets, and reticulocytes of the research parameters, in combination with the respective conventional parameters, for each analyte; and to quantify the morphological changes in these analytes, to propose a correction factor for each. Methods Ethylenediaminetetraacetic acid (EDTA) blood specimens from patients were reanalyzed in 2-hour intervals and then, the mean percentage (X¯t%) changes were calculated. To evaluate the stability of the analyzed material, we used different criteria according to within-run and between-batch analytical variation, as well as intraindividual biological variation. Next, the mean deviation percentage of the parameters that undergo time-dependent significant changes was calculated, to obtain a correction factor. Results Several conventional and research parameters showed significant alterations in the stability at an early time after arrival at the laboratory. Conclusion Cell variations over time can be quantified and corrected by applying a multiplying factor to the signal obtained in the analyzer.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ibrahim Mustafa ◽  
Asma Al Marwani ◽  
Khuloud Mamdouh Nasr ◽  
Noora Abdulla Kano ◽  
Tameem Hadwan

Usually packed red blood cells (pRBCs) require specific conditions in storage procedures to ensure the maximum shelf life of up to 42 days in 2–6°C. However, molecular and biochemical consequences can affect the stored blood cells; these changes are collectively labeled as storage lesions. In this study, the effect of prolonged storage was assessed through investigating morphological changes and evaluating oxidative stress. Samples from leukodepleted pRBC in SAGM stored at 4°C for 42 days were withdrawn aseptically on day 0, day 14, day 28, and day 42. Morphological changes were observed using scanning electron microscopy and correlated with osmotic fragility and hematocrit. Oxidative injury was studied through assessing MDA level as a marker for lipid peroxidation. Osmotic fragility test showed that extended storage time caused increase in the osmotic fragility. The hematocrit increased by 6.6% from day 0 to day 42. The last 2 weeks show alteration in the morphology with the appearance of echinocytes and spherocytes. Storage lesions and morphological alterations appeared to affect RBCs during the storage period. Further studies should be performed to develop strategies that will aid in the improvement of stored pRBC quality and efficacy.


2021 ◽  
pp. 1-10
Author(s):  
Rui Zhong ◽  
Dingding Han ◽  
Xiaodong Wu ◽  
Hong Wang ◽  
Wanjing Li ◽  
...  

Background: The hypoxic environment stimulates the human body to increase the levels of hemoglobin (HGB) and hematocrit and the number of red blood cells. Such enhancements have individual differences, leading to a wide range of HGB in Tibetans’ whole blood (WB). Study Design: WB of male Tibetans was divided into 3 groups according to different HGB (i.e., A: >120 but ≤185 g/L, B: >185 but ≤210 g/L, and C: >210 g/L). Suspended red blood cells (SRBC) processed by collected WB and stored in standard conditions were examined aseptically on days 1, 14, 21, and 35 after storage. The routine biochemical indexes, deformability, cell morphology, and membrane proteins were tested. Results: Mean corpuscular volume, adenosine triphosphate, pH, and deformability were not different in group A vs. those in storage (p > 0.05). The increased rate of irreversible morphology of red blood cells was different among the 3 groups, but there was no difference in the percentage of red blood cells with an irreversible morphology after 35 days of storage. Group C performed better in terms of osmotic fragility and showed a lower rigid index than group A. Furthermore, SDS-PAGE revealed similar cross-linking degrees of cell membrane protein but the band 3 protein of group C seemed to experience weaker clustering than that of group A as detected by Western Blot analysis after 35 days of storage. Conclusions: There was no difference in deformability or morphological changes in the 3 groups over the 35 days of storage. High HGB levels of plateau SRBC did not accelerate the RBC change from a biconcave disc into a spherical shape and it did not cause a reduction in deformability during 35 days of preservation in bank conditions.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Diana L Diesen ◽  
Jonathan S Stamler

Transfusion of stored red blood cells (RBCs) is associated with a decrease in tissue oxygenation in animal models and with increased mortality and morbidity in patients. Recent studies have demonstrated that stored RBCs are deficient in vasodilatory ability and depleted of S -nitrosohemoglobin (SNO-Hb), and that renitrosylation ex vivo can increase SNO-Hb levels and restore vasoactivity. We have examined in a mouse model the extent to which transfusion impairs tissue oxygenation and whether SNO-Hb repletion can ameliorate that impairment. We report here that transfusion of (mouse) RBCs stored for 1 day or 1 week results in tissue hypoxia that is largely prevented by SNO-Hb repletion prior to transfusion ( 1 day stored blood : % decrease in oxygenation 58+/−10% untreated vs. 92+/−0.7% SNO-Hb repleted, p<0.05, n=3– 6; 1 week stored blood : % decrease in oxygenation 66+/−10% untreated vs. 91+/−2.8% SNO-Hb repleted, p<0.05, n=3– 6). Storage of mouse blood beyond human expiration-equivalents (1 month) resulted in substantial lysis and the death of all mice transfused (native and SNO-Hb repleted blood, n=5). In conclusion, repletion of SNO-Hb ameliorates the decrease in tissue oxygenation that results from transfusion of untreated stored blood. Therefore, SNO-Hb repletion may provide a simple and efficacious method to reduce transfusion-related mortality and morbidity.


2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Yaozhen Chen ◽  
Jing Zhang ◽  
Shunli Gu ◽  
Dandan Yin ◽  
Qunxing An ◽  
...  

During storage in blood banks, red blood cells (RBCs) undergo the mechanical and metabolic damage, which may lead to the diminished capacity to deliver oxygen. At high altitude regions, the above-mentioned damage may get worse. Thus, more attention should be paid to preserve RBCs when these components need transfer from plain to plateau regions. Recently, we found that mesenchymal stromal cells (MSCs) could rescue from anemia, and MSCs have been demonstrated in hematopoietic stem cells (HSCs) transplantation to reconstitute hematopoiesis in vivo by us. Considering the functions and advantages of MSCs mentioned above, we are trying to find out whether they are helpful to RBCs in storage duration at high altitudes. In the present study, we first found that mice MSCs could be preserved in citrate phosphate dextrose adenine-1 (CPDA-1) at 4 ± 2°C for 14 days, and still maintained great viability, even at plateau region. Thus, we attempted to use MSCs as an available supplement to decrease RBCs lesion during storage. We found that MSCs were helpful to support RBCs to maintain biochemical parameters and kept RBCs function well on relieving anemia in an acute hemolytic murine model. Therefore, our investigation developed a method to get a better storage of RBCs through adding MSCs, which may be applied in RBCs storage as a kind of cellular additive into preservation solution.


1961 ◽  
Vol 35 (3_ts) ◽  
pp. 279-283
Author(s):  
Y. E. Crawford ◽  
R.P. Skinner ◽  
W.J. Lind ◽  
A. E. Heimann ◽  
D.E. Hutchings ◽  
...  

2016 ◽  
Vol 37 ◽  
pp. 34-40 ◽  
Author(s):  
A.I. Kozelskaya ◽  
A.V. Panin ◽  
I.A. Khlusov ◽  
P.V. Mokrushnikov ◽  
B.N. Zaitsev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document