scholarly journals Structural geological methods in the geotechnical practice – rock mass rating. Advantages and problems of the rating methods

2020 ◽  
Vol 81 (1) ◽  
pp. 35-54
Author(s):  
Ivan Dimitrov

This paper presents a review of the most common geotechnical rock rating methods. The directional properties of the rock’s anisotropies are exemplified, by a case of resolution of stresses in folded and foliated metamorphic rocks. In such rocks, depending on the geometry of the folds, the ambient stress field can generate varying shear potential along the foliation planes in different parts of the excavation. The commonly used rating schemes, with accent on the geological feasibility of the classifications, are discussed – Protodiakonov’s rock scale, Terzaghi’s grading for construction of tunnels, then the rock quality designation of Deere, the Bieniawski’s rock mass rating (RMR), the Hoek, and Brown’s GSI and the Barton’s Q-system. It is emphasized that in spite of its broad use, the RQD is distorting the statistical weight of the joint groups as some steeply dipping joints may be completely neglected. It is recognized that the RMR is the simplest to use but underestimates the directional properties of the rock anisotropies, which require better definition and has no provision for lithologically varying rock packages, although it has the advantage of using the uniaxial compressive strength, which other systems do not employ. The Hoek and Brown’s criterion went too far with complex empirical relationships, which rely on extensive laboratory testing, so it is no more field criterion. Besides, its geological descriptive powers are rather poor and now, new form of GSI classification is offered for nearly every lithological type. Barton’s Q-system, being best suited to case studies of actual underground constructions, suffers from the fact that is centered nearly exclusively on joints, which may be justified in Norway, where mainly magmatic and high grade metamorphic rocks are present but should be applied cautiously in areas, where sedimentary, volcanic and strongly foliated rocks are exposed. In general, for all the discussed geomechanical classification systems (RMR, GSI, Q) the rule is valid, that they work better in an isotropic, strong but jointed rock masses and do not work well in week layered and foliated rocks.

2017 ◽  
Vol 54 (6) ◽  
pp. 825-834 ◽  
Author(s):  
P.J. Pells ◽  
Z.T. Bieniawski ◽  
S.R. Hencher ◽  
S.E. Pells

Rock quality designation (RQD) was introduced by Don Deere in the mid-1960s as a means of using diamond core to classify rock for engineering purposes. Subsequently, it was incorporated into the rock mass rating (RMR) and Q-system classification methods that, worldwide, now play substantial roles in rock mechanics design, whether for tunnels, foundations, rock slopes or rock excavation. It is shown that a key facet of the definition of RQD is ignored in many parts of the world, and it is noted that there are several inherent limitations to the use of RQD. Based on mapping of rock formations by 17 independent professionals at different locations in Australia and South Africa, it is shown that differences in assessed RQD values result in significant errors in computed RMR and Q ratings, and also in geological strength index (GSI) and mining rock mass rating (MRMR). The introduction of a look-up chart for assessing GSI has effectively removed the need to measure, or estimate, RQD. It has been found that GSI values derived from the look-up chart are as valid as those derived by calculation from the original component parameters, and are satisfactorily consistent between professionals from diverse backgrounds. The look-up charts provide a quick and appropriate means of assessing GSI from exposures. GSI is, in turn, a useful rock mass strength index; one new application is presented for assessing potential erosion of unlined spillways in rock. Incorporation of RQD within the RMR and Q classification systems was a matter of historical development, and its incorporation into rock mass classifications is no longer necessary.


2020 ◽  
Vol 4 (2) ◽  
pp. 96-102
Author(s):  
Rodeano Roslee ◽  
Jeffery Anak Pirah ◽  
Mohd Fauzi Zikiri ◽  
Ahmad Nazrul Madri

Rock Mass Classification Systems (RMCS) can be of considerable use in the initial stage of a project when little or no detailed information is available. There is a large number of RMCS developed for general purposes but also for specific applications such as Rock Quality Designation (RQD), Rock Mass Rating (RMR), Rock Structure Rating (RSR), Geological Strength Index (GSI), Slope Mass Rating (SMR), etc. In this paper, we present the results of the applicability of the Rock Mass Rating (RMR) System for the Trusmadi Formation in Sabah, Malaysia. The RMR system is a RMCS incorporated with five (5) parameters: Strength of intact rock material, Rock Quality Designation (RQD), Spacing of joints, Condition of joints, and Groundwater conditions. A total of ten (10) locations were selected on the basis of exposures of the lithology and slope condition of the Trusmadi Formation. Trusmadi Formation is Paleocene to Eocene in aged. The Trusmadi Formation generally shows two major structural orientations NW-SE and NE-SW. Trusmadi Formation is characterized by the present of dark colour argillaceous rocks, siltstone and thin-bedded turbidite in well-stratified sequence. Some of the Trusmadi Formation rocks have been metamorphosed to low grade of the greenish-schist facies; the sediment has become slate, phyllite and metarenite. Cataclastic rocks are widespread and occur as black phyllonite enclosing arenitic and lutitic boudins with diameter up to a meter or demarcating thin to thicker fault zones or as flaser zones with hardly any finer grain matrix or as zones of closely spaced fractures. Quartz and calcite veins are quite widespread within the crack deformed on sandstone beds. The shale is dark grey when fresh but changes light grey to brownish when weathered. The RMR system for 10 outcrops ranges from 33.0 to 50.0 and its classified as “Fair” (Class III) to “Poor” (Class IV) rocks. The Fair Rock (Class III) recommended that the excavation should be top heading and bench 1.5 m – 3 m advance in the top heading. Support should be commencing after each blast and complete support 10 m from face. Rock bolts should be systematic with 4 m long spaced 1.5 m – 2 m in crown and walls with wire mesh in crown. Shotcrete should be 50 mm – 100 mm in crown and 30 mm in sides. While for the Poor Rock (Class IV), the excavation should be top heading and bench 1.0 m – 1.5 m advance in top heading. Support should be installed concurrently with excavation, 10 m from face. Rock bolt should be systematic with 4 m – 5 m long, spaced 1.5 m – 1.5 m in crown and walls with wire mesh. Shotcrete of 100 m – 150 mm in crown and 100 mm in sides. The steel sets should be light to medium ribs spaced 1.5 m only when required.


2019 ◽  
Vol 9 (10) ◽  
pp. 2065 ◽  
Author(s):  
Jonguk Kim ◽  
Hafeezur Rehman ◽  
Wahid Ali ◽  
Abdul Muntaqim Naji ◽  
Hankyu Yoo

In extensively used empirical rock-mass classification systems, the rock-mass rating (RMR) and tunneling quality index (Q) system, rock-mass quality, and tunnel span are used for the selection of rock bolt length and spacing and shotcrete thickness. In both systems, the rock bolt spacing and shotcrete thickness selection are based on the same principle, which is used for the back-calculation of the rock-mass quality. For back-calculation, there is no criterion for the selection of rock-bolt-spacing-based rock-mass quality weightage and shotcrete thickness along with tunnel-span-based rock-mass quality weightage. To determine this weightage effect during the back-calculation, five weightage cases are selected, explained through example, and applied using published data. In the RMR system, the weightage effect is expressed in terms of the difference between the calculated and back-calculated rock-mass quality in the two versions of RMR. In the Q system, the weightage effect is presented in plots of stress reduction factor versus relative block size. The results show that the weightage effect during back-calculation not only depends on the difference in rock-bolt-spacing-based rock-mass quality and shotcrete along with tunnel-span-based rock-mass quality, but also on their corresponding values.


2019 ◽  
Vol 3 (2) ◽  
pp. 11
Author(s):  
Ainul Fatayaatis Salaamah ◽  
Teuku Faisal Fathani ◽  
Wahyu Wilopo

One important part of rock mass investigation is the geomechanical assessment in terms of rock mass classification systems. Rock mass classification is one of themost efficient methods in rock mechanics to provide a basic understanding of rock masscharacterization. Rock mass properties can be determined by a seismic refraction surveyas an indirect geophysical assessment. In this study, the P-wave velocity from seismicrefraction was compared with the Rock Quality Designation (RQD) from the boreholes.The empirical correlation between the RQD and the P-wave velocity was found by usingthe linear regression analysis. The RQD value estimated from the P-wave velocity can beapplied for tropical environment study with geological conditions of volcanic rocks. This study helps to estimate and predict the subsurface rock quality, to reduce investigation costs, and to improve understanding of subsurface rock quality.


2020 ◽  
Vol 5 (1) ◽  
pp. 35-48
Author(s):  
Абдулхалим Зарьяб ◽  
◽  
Мохаммад Ибрагим Наджаф ◽  
Мохаммад Зия Джамал

В настоящее время на реке Шакардара примерно в 22 км к северо-западу от г. Кабул, Афганистан, ведется строительство плотины Шах-и-Арус. Ее высота и длина составляют 77,5 м и 303 м, соответственно, а объем водохранилища оценивается примерно в 9,38 млн м 3 . Данное многоцелевое сооружение возводится из роликового уплотненного бетона (RCC) и предназначено для хранения оросительной воды, сдерживания наводнений и выработки электроэнергии. Плотина располагается в тектонически активной зоне, чем обусловливается значительное воздействие на нее тектонических процессов. В настоящей статье представлены результаты сопоставления показателей нарушенности горных пород (Rock Quality Designation, RQD) и параметров Люжона, основанных на обзоре и анализе материалов первоначальных инженерно-геологических изысканий и дополнительных полевых наблюдений. Результаты значений Люжона и показателей RQD прошли статистически-графическую оценку, и далее данные полученных графиков были сопоставлены со всеми другими естественными условиями зоны строительства плотины. Полученные результаты указывают на то, что комплекс природных условий в определенной степени характеризуется взаимосвязью между значениями Люжона и параметрами RQD. Кроме этого, массив горных пород основания плотины был охарактеризован в соответствии с классификацией скальной породы RMR (Rock Mass Rating).


2018 ◽  
Vol 8 (8) ◽  
pp. 1250 ◽  
Author(s):  
Hafeezur Rehman ◽  
Wahid Ali ◽  
Abdul Naji ◽  
Jung-joo Kim ◽  
Rini Abdullah ◽  
...  

Although rock-mass rating (RMR) and tunneling quality index (Q) systems are used in different rock engineering projects as empirical design tools, their application in tunnel design is widely accepted as these systems were developed and updated for this purpose specifically. This paper reviews the work conducted by various researchers since the development of these two systems with respect to tunneling only. Compared to other empirical classification systems, these systems received international acceptance and are still used as empirical design tools in tunneling due to their continuous updates in the form of characterization and support. As the primary output of these systems is the initial support design for tunnel, however, their use in the calculation for rock-mass properties is an essential contribution of these systems in rock engineering design. Essential for the tunnel design, these rock-mass properties include the modulus of deformation, strength, Poisson’s ratio, Mohr-Coulomb parameters and Hoek-Brown constants. Other application for tunneling include the stand-up time and rock load. The uses and limitations of these systems as empirical tunnel design tools are also included in this review article for better results. Research to date indicates that if the ground behavior is also taken into account, the application of these empirical systems will be more beneficial to the preliminary design of tunnels.


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Erick Alan Deratama ◽  
Romla Noor Hakim ◽  
Eko Santoso ◽  
Bayu Budi Santoso ◽  
Ashri Kurniawan

PT. Natarang Mining merupakan tambang emas bawah tanah yang menerapkan metode sublevel open stoping. Untuk memaksimalkan kapasitas produksi akan dibuat open stope pada Drift West Level 4 di kedalaman 165 m. Penelitian ini dlakukan untuk mengevaluasi kestabilan sill drift dan optimalisasi dimensi stope pada lokasi Drift West Level 4 dengan menggunakan metode Mathews Stability Graph dan Mining Rock Mass Rating (Laubscher and Jacovec, 2001). Metode ini dipilih karena penentuan parameter disesuaikan dengan kondisi tambang bawah tanah seperti efek peledakan, tegangan terinduksi, tingkat pelapukan, kondisi air dan orientasi kekar. Dalam karaketerisasi massa batuan, terdapat tiga jenis batuan pada lokasi penelitian yaitu andesitic massive, prophylitic andesitic vulcanic breccia dan brecciated quartz vein. Berdasarkan pendekatan empiris MRMR dan Mathews Stability Graph lokasi drift west dalam kondisi stabil dengan nilai hydraulic radius 1.16 m. Optimalisasi dimensi pada perencanaan open stope dapat dilakukan dengan memaksimalkan nilai hydraulic radius dengan perencanaan tinggi stope adalah 50 m.  Berdasarkan pendekatan empiris MRMR panjang optimal stope dalam kondisi stabil adalah 39 m pada hanging wall dan 28 m pada vein. Sedangkan pada metode Mathews Stability Graph diperoleh nilai panjang optimal sebesar 15 m pada hangingwall dan 12.5 m pada vein. Kata-kata kunci : MRMR, Q System, Stability Graph, Hydraulic Radius


2020 ◽  
Vol 4 (4) ◽  
pp. 209-215
Author(s):  
Aprilliana ◽  
Taufik Toha ◽  
Budhi Kuswan Susilo

Peledakan merupakan salah satu metode pembongkaran lapisan batuan. Hasil dari peledakan ini adalah fragmentasi batuan yang berukuran beragam. Salah satu faktor yang mempengaruhi ukuran fragmentasi ini sangat dipengaruhi oleh geometri peledakan. Geometri peledakan sulit untuk dievaluasi karena belum pernah melakukan analisis fragmentasi hasil peledakan menggunakan software. Tujuan dari penelitian ini adalah mengevaluasi geometri peledakan, Identifikasi kelas massa batuan menggunakan Rock Mass Rating (RMR), dan menganalisis fragmentasi hasil peledakan. Metode identifikasi kelas massa batuan dalam penelitian ini menggunakan metode rock mass rating (RMR) meliputi kuat tekan batuan, rock quality designation (RQD), jarak diskontinuity, kondisi diskontinuity, dan air tanah. Sedangkan fragmentasi hasil peledakan dianalisis menggunakan software split desktop. Pada analisis ini foto fragmentasi hasil peledakan di front dan di disposal diambil langsung sebagai data utama yang menjadi dasar dari analisis ini. Berdasarkan hasil analisis RMR diketahui bahwa batuan yang dibongkar adalah jenis claystone dengan rating kuat tekan 1, RQD 8, Jarak diskontinuitas 15, kondisi diskontinuitas 0, kondisi air tanah 15. Jadi total rating RMR 39 yang berarti batuan ini tergolong batuan jelek atau lunak. data diketahui bahwa batuan yang diledakkan merupakan jenis claystone kelas IV yang berarti jelek atau lunak, Hasil analisis fragmentasi hasil peledakan di disposal lebih kecil dan seragam dibandingkan dengan fragmentasi di front, perbedaan ukuran fragmentasi ini akibat adanya pengaruh dari aktivitas gali muat dan angkut material dari front ke disposal. Produktivitas excavator sudah sesuai dengan buku panduan yang berarti fragmentasi hasil peledakan sudah baik sehingga geometri peledakan tidak perlu diperbaiki.


2009 ◽  
Vol 43 (3) ◽  
pp. 287-304 ◽  
Author(s):  
J. L. Justo ◽  
E. Justo ◽  
J. M. Azañón ◽  
P. Durand ◽  
A. Morales

Sign in / Sign up

Export Citation Format

Share Document