Higher Order Statistics Based Blind Steg analysis using Deep Learning

2021 ◽  
Vol 34 (1) ◽  
pp. 19-28
Author(s):  
S. Bera ◽  
K. Thakur ◽  
P. Vyas ◽  
M. Thakur ◽  
A. Shrivastava

Universal isteganalysis of grey level JPEG images is addressed by modelling the neighbourhood relationship of the image coefficients using the higher order statistical method developed by two-step Markov Transition Probability Matrix (TPM). The implementation of TPM together with the neighbouring pixel relationship provides a better and comparable detection results. The detection accuracy is evaluated on the stego image database using eXtreme Gradient Boosting (XGBoost) with Principal Component Analysis (PCA) on nsF5 and JUNIWARD hiding techniques. Execution time is also compared for all the classifiers. The images are taken from Green spun library and Google website- eXtreme Gradient Boosting.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2748
Author(s):  
Jersson X. Leon-Medina ◽  
Maribel Anaya ◽  
Núria Parés ◽  
Diego A. Tibaduiza ◽  
Francesc Pozo

Damage classification is an important topic in the development of structural health monitoring systems. When applied to wind-turbine foundations, it provides information about the state of the structure, helps in maintenance, and prevents catastrophic failures. A data-driven pattern-recognition methodology for structural damage classification was developed in this study. The proposed methodology involves several stages: (1) data acquisition, (2) data arrangement, (3) data normalization through the mean-centered unitary group-scaling method, (4) linear feature extraction, (5) classification using the extreme gradient boosting machine learning classifier, and (6) validation applying a 5-fold cross-validation technique. The linear feature extraction capabilities of principal component analysis are employed; the original data of 58,008 features is reduced to only 21 features. The methodology is validated with an experimental test performed in a small-scale wind-turbine foundation structure that simulates the perturbation effects caused by wind and marine waves by applying an unknown white noise signal excitation to the structure. A vibration-response methodology is selected for collecting accelerometer data from both the healthy structure and the structure subjected to four different damage scenarios. The datasets are satisfactorily classified, with performance measures over 99.9% after using the proposed damage classification methodology.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wenzhi Zhang ◽  
Runchuan Li ◽  
Shengya Shen ◽  
Jinliang Yao ◽  
Yan Peng ◽  
...  

Myocardial infarction (MI) is one of the most common cardiovascular diseases threatening human life. In order to accurately distinguish myocardial infarction and have a good interpretability, the classification method that combines rule features and ventricular activity features is proposed in this paper. Specifically, according to the clinical diagnosis rule and the pathological changes of myocardial infarction on the electrocardiogram, the local information extracted from the Q wave, ST segment, and T wave is computed as the rule feature. All samples of the QT segment are extracted as ventricular activity features. Then, in order to reduce the computational complexity of the ventricular activity features, the effects of Discrete Wavelet Transform (DWT), Principal Component Analysis (PCA), and Locality Preserving Projections (LPP) on the extracted ventricular activity features are compared. Combining rule features and ventricular activity features, all the 12 leads features are fused as the ultimate feature vector. Finally, eXtreme Gradient Boosting (XGBoost) is used to identify myocardial infarction, and the overall accuracy rate of 99.86% is obtained on the Physikalisch-Technische Bundesanstalt (PTB) database. This method has a good medical diagnosis basis while improving the accuracy, which is very important for clinical decision-making.


Equilibrium ◽  
2015 ◽  
Vol 10 (1) ◽  
pp. 33 ◽  
Author(s):  
Andrzej Cieślik ◽  
Łukasz Goczek

In this paper, we study the evolution of corruption patterns in 27 post-communist countries during the period 1996-2012 using the Control of Corruption Index and the corruption category Markov transition probability matrix. This method allows us to generate the long-run distribution of corruption among the post-communist countries. Our empirical findings suggest that corruption in the post-communist countries is a very persistent phenomenon that does not change much over time. Several theoretical explanations for such a result are provided.


2020 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Zhijun Wu ◽  
Rong Li ◽  
Panpan Yin ◽  
Changliang Li

Steganalysis is used for preventing the illegal use of steganography to ensure the security of network communication through detecting whether or not secret information is hidden in the carrier. This paper presents an approach to detect the quantization index modulation (QIM) of steganography in G.723.1 based on the analysis of the probability of occurrence of index values before and after steganography and studying the influence of adjacent index values in voice over internet protocol (VoIP). According to the change of index value distribution characteristics, this approach extracts the distribution probability matrix and the transition probability matrix as feature vectors, and uses principal component analysis (PCA) to reduce the dimensionality. Through a large amount of sample training, the support vector machine (SVM) is designed as a classifier to detect the QIM steganography. The speech samples with different embedding rates and different durations were tested to verify their impact on the accuracy of the steganalysis. The experimental results show that the proposed approach improves the accuracy and reliability of the steganalysis.


2020 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Stuart Phinn

Machine learning has been employed for various mapping and modeling tasks using input variables from different sources of remote sensing data. For feature selection involving high- spatial and spectral dimensionality data, various methods have been developed and incorporated into the machine learning framework to ensure an efficient and optimal computational process. This research aims to assess the accuracy of various feature selection and machine learning methods for estimating forest height using AISA (airborne imaging spectrometer for applications) hyperspectral bands (479 bands) and airborne light detection and ranging (lidar) height metrics (36 metrics), alone and combined. Feature selection and dimensionality reduction using Boruta (BO), principal component analysis (PCA), simulated annealing (SA), and genetic algorithm (GA) in combination with machine learning algorithms such as multivariate adaptive regression spline (MARS), extra trees (ET), support vector regression (SVR) with radial basis function, and extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin) classifiers were evaluated. The results demonstrated that the combinations of BO-XGBdart and BO-SVR delivered the best model performance for estimating tropical forest height by combining lidar and hyperspectral data, with R2 = 0.53 and RMSE = 1.7 m (18.4% of nRMSE and 0.046 m of bias) for BO-XGBdart and R2 = 0.51 and RMSE = 1.8 m (15.8% of nRMSE and −0.244 m of bias) for BO-SVR. Our study also demonstrated the effectiveness of BO for variables selection; it could reduce 95% of the data to select the 29 most important variables from the initial 516 variables from lidar metrics and hyperspectral data.


Author(s):  
Ade Jamal ◽  
Annisa Handayani ◽  
Ali Akbar Septiandri ◽  
Endang Ripmiatin ◽  
Yunus Effendi

Breast cancer is the most important cause of death among women. A prediction of breast cancer in early stage provides a greater possibility of its cure. It needs a breast cancer prediction tool that can classify a breast tumor whether it was a harmful malignant tumor or un-harmful benign tumor. In this paper, two algorithms of machine learning, namely Support Vector Machine and Extreme Gradient Boosting technique will be compared for classification purpose. Prior to the classification, the number of data attribute will be reduced from the raw data by extracting features using Principal Component Analysis. A clustering method, namely K-Means is also used for dimensionality reduction besides the Principal Component Analysis. This paper will present a comparison among four models based on two dimensionality reduction methods combined with two classifiers which applied on Wisconsin Breast Cancer Dataset. The comparison will be measured by using accuracy, sensitivity and specificity metrics evaluated from the confusion matrices. The experimental results have indicated that the K-Means method, which is not usually used for dimensionality reduction can perform well compared to the popular Principal Component Analysis.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 522
Author(s):  
Congcong Sun ◽  
Hui Tian ◽  
Chin-Chen Chang ◽  
Yewang Chen ◽  
Yiqiao Cai ◽  
...  

Steganalysis of adaptive multi-rate (AMR) speech is a hot topic for controlling cybercrimes grounded in steganography in related speech streams. In this paper, we first present a novel AMR steganalysis model, which utilizes extreme gradient boosting (XGBoost) as the classifier, instead of support vector machines (SVM) adopted in the previous schemes. Compared with the SVM-based model, this new model can facilitate the excavation of potential information from the high-dimensional features and can avoid overfitting. Moreover, to further strengthen the preceding features based on the statistical characteristics of pulse pairs, we present the convergence feature based on the Markov chain to reflect the global characterization of pulse pairs, which is essentially the final state of the Markov transition matrix. Combining the convergence feature with the preceding features, we propose an XGBoost-based steganalysis scheme for AMR speech streams. Finally, we conducted a series of experiments to assess our presented scheme and compared it with previous schemes. The experimental results demonstrate that the proposed scheme is feasible, and can provide better performance in terms of detecting the existing steganography methods based on AMR speech streams.


Sign in / Sign up

Export Citation Format

Share Document