scholarly journals BOUNDARY LAYER CONTROL OF A RADIATIVE CASSON FLUID FLOW PAST A PERMEABLE RIGA-PLATE WITH UNIMOLECULAR CHEMICAL REACTION

2019 ◽  
Vol 49 (4) ◽  
pp. 233-239
Author(s):  
Parasuraman Loganathan ◽  
Krishnamurthy Deepa

The buoyancy driven, chemically reacting and radiative Casson fluid flow past an impulsively started permeable Riga-plate is investigated through the numerical solution obtained by Crank-Nicholson implicit scheme of finite difference method. The main aim of this study is to control the boundary layer separation.  Escalating modified Hartmann number and the distance from leading edge of the plate reduces the viscous drag so that the separation can be controlled. Effects of permeability on the flow configuration are also elucidated. The results are validated by comparing the solutions of the literature which already exists.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sobia Akbar ◽  
Azad Hussain

Purpose. The flow of nonviscous Casson fluid is examined in this study over an oscillating surface. The model of the fluid flow has been inspected in the presence of oblique stagnation point flow. The scrutiny is subsumed for the Riga plate by considering the effects of magnetohydrodynamics. The Riga plate is considered as an electromagnetic lever which carries eternal magnets and a stretching line up of alternating electrodes coupled on a plane surface. We have considered nonboundary layer two-dimensional incompressible flow of the fluid. The fluid flow model is analyzed in the fixed frame of reference. Motivation. The motivation of achieving more suitable results has always been a quest of life for scientists; the capability of determining the boundary layer of flow on aircraft which either stays laminar or turns turbulent has encouraged the researcher to study compressible flow in depth. The compressible fluid with boundary layer flow has been utilized by numerous researchers to reduce skin friction and enhance thermal and convectional heat exchange. Design/Approach/Methodology. The attained partial differential equations will be critically inspected by using suitable similarity transformation to transform these flows thrived equations into higher nonlinear ordinary differential equations (ODE). Then, these equations of motion are intercepted by mathematical techniques such as the bvp4c method in Maple and Matlab. The graphical and tabular representation of different parameters is also given. Findings. The behavior of β and modified Hartmann number M increases by positively increasing the values of both parameters for F η , while ω decreases with increasing the values of ω for F η . The graph of β shows upward behavior for distinct values for both G η and G ′ η for velocity portray. Prandtl number and β for the temperature profile of θ η and θ 1 η goes downward with increasing parameters.


2021 ◽  
Vol 11 (6) ◽  
pp. 2593
Author(s):  
Yasir Al-Okbi ◽  
Tze Pei Chong ◽  
Oksana Stalnov

Leading edge serration is now a well-established and effective passive control device for the reduction of turbulence–leading edge interaction noise, and for the suppression of boundary layer separation at high angle of attack. It is envisaged that leading edge blowing could produce the same mechanisms as those produced by a serrated leading edge to enhance the aeroacoustics and aerodynamic performances of aerofoil. Aeroacoustically, injection of mass airflow from the leading edge (against the incoming turbulent flow) can be an effective mechanism to decrease the turbulence intensity, and/or alter the stagnation point. According to classical theory on the aerofoil leading edge noise, there is a potential for the leading edge blowing to reduce the level of turbulence–leading edge interaction noise radiation. Aerodynamically, after the mixing between the injected air and the incoming flow, a shear instability is likely to be triggered owing to the different flow directions. The resulting vortical flow will then propagate along the main flow direction across the aerofoil surface. These vortical flows generated indirectly owing to the leading edge blowing could also be effective to mitigate boundary layer separation at high angle of attack. The objectives of this paper are to validate these hypotheses, and combine the serration and blowing together on the leading edge to harvest further improvement on the aeroacoustics and aerodynamic performances. Results presented in this paper strongly indicate that leading edge blowing, which is an active flow control method, can indeed mimic and even enhance the bio-inspired leading edge serration effectively.


1987 ◽  
Author(s):  
Clifford J. Obara ◽  
C. P. van Dam

In this paper, foil and planform parameters which govern the level of viscous drag produced by the keel of a sailing yacht are discussed. It is shown that the application of laminar boundary-Layer flow offers great potential for increased boat speed resulting from the reduction in viscous drag. Three foil shapes have been designed and it is shown that their hydro­dynamic characteristics are very much dependent on location and mode of boundary-Layer transition. The planform parameter which strongly affects the capabilities of the keel to achieve laminar flow is lea ding-edge sweep angle. The two significant phenomena related to keel sweep angle which can cause premature transition of the laminar boundary layer are crossflow instability and turbulent contamination of the leading-edge attachment line. These flow phenomena and methods to control them are discussed in detail. The remaining factors that affect the maintainability of laminar flow include surface roughness, surface waviness, and freestream turbulence. Recommended limits for these factors are given to insure achievability of laminar flow on the keel. In addition, the application of a simple trailing-edge flap to improve the hydrodynamic characteristics of a foil at moderate-to-high leeway angles is studied.


2021 ◽  
pp. 1-51
Author(s):  
Yingjie Zhang ◽  
Xingen Lu ◽  
Yanfeng Zhang ◽  
Ziqing Zhang ◽  
Xu Dong ◽  
...  

Abstract This paper describes the stall mechanism in an ultra-high-pressure-ratio centrifugal compressor. A model comprising all impeller and diffuser blade passages is used to conduct unsteady simulations that trace the onset of instability in the compressor. Backward-traveling rotating stall waves appear at the inlet of the radial diffuser when the compressor is throttled. Six stall cells propagate circumferentially at approximately 0.7% of the impeller rotation speed. The detached shock of the radial diffuser leading edge and the number of stall cells determine the direction of stall propagation, which is opposite to the impeller rotation direction. Dynamic mode decomposition is applied to instantaneous flow fields to extract the flow structure related to the stall mode. This shows that intensive pressure fluctuations concentrate in the diffuser throat as a result of changes in the detached shock intensity. The diffuser passage stall and stall recovery are accompanied by changes in incidence angle and shock wave intensity. When the diffuser passage stalls, the shock-induced boundary-layer separation region near the diffuser vane suction surface gradually expands, increasing the incidence angle and decreasing the shock intensity. The shock is pushed from the diffuser throat toward the diffuser leading edge. When the diffuser passage recovers from stall, the shock wave gradually returns to the diffuser throat, with the incidence angle decreasing and the shock intensity increasing. Once the shock intensity reaches its maximum, the diffuser passage suffers severe shock-induced boundary-layer separation and stalls again.


Sign in / Sign up

Export Citation Format

Share Document