scholarly journals 1. Isolation and Biochemical Characterization of Arsenic resistant Bacteria from Textile Effluent Contaminated Soil of Jaipur, Rajasthan

2021 ◽  
Vol 1 (2) ◽  
pp. 1-5

Arsenic occurs naturally in the environment, but its uncontrolled liberation from industrial effluents has been imposing adverse effects on the environment. The continuous exposure of the soil is a matter of concern in this study. The soil consortium contains bacterial colonies that resist and adapt the metal toxicants and can in turn help in the bioremediation of such metals from the soil. This study stresses the isolation of arsenic resistant bacteria from the arsenic-contaminated soil. The Soil Sample was collected from the Sanganer area of Jaipur, Rajasthan. The soil in this area received the textile discharge from the industries located nearby. Four arsenic resistant bacteria were isolated from the sample which showed a high tolerance level towards arsenic and was able to grow in the presence of arsenic in-vitro. The Minimum inhibitory concentration was also determined for the strains against arsenite. The highest MIC was found to be 16mM of arsenite, which concludes tolerable limits of the strains. The Biochemical and Morphological characterization of the isolates was also conducted. The Four isolates also showed resistance towards various other metals like cadmium, cobalt, lead, zinc, mercury, chromium, and tin. The isolates on biochemical characterization were found to belong to the following Genus: Moraxella, Azomonas, Acetobactor and Corynebacterium. This resistance capacity of the isolates depicts their potential to bioremediate the toxicity of the arsenic in the environment.

2020 ◽  
Vol 13 (11) ◽  
pp. 1
Author(s):  
A. R. B. Zanco ◽  
A. Ferreira ◽  
G. C. M. Berber ◽  
E. N. Gonzaga ◽  
D. C. C. Sabino

The different integrated production systems can directly interfere with its bacterial community. The present study aimed to assess density, bacterial diversity and the influence of dry and rainy season in different integrated and an exclusive production system. The fallow and a native forest area was assessed to. Samples were collected in 2012 March and September. The isolation were carried out into Petri dishes containing DYGS medium. The number of colony forming units (CFU) was counted after 48 hours and. The bacterial density ranged between 106 and 107 CFU g-1 soil. The crop system affected the dynamics of the bacterial community only in the rainy season. The rainy season showed greater density of total bacteria when compared to the dry period regardless of the cropping system. The dendrograms with 80 % similarity showed thirteen and fourteen groups in the rainy and dry seasons. Isolates with the capacity to solubilize phosphate in vitro were obtained from all areas in the two seasons, but this feature has been prevalent in bacteria isolated during the rainy season


1985 ◽  
Vol 22 (4) ◽  
pp. 375-386 ◽  
Author(s):  
H. C. Wimberly ◽  
D. O. Slauson ◽  
N. R. Neilsen

Antigen-specific challenge of equine leukocytes induced the non-lytic release of a platelet-activating factor in vitro. The equine platelet-activating factor stimulated the release of serotonin from equine platelets in a dose-responsive manner, independent of the presence of cyclo-oxygenase pathway inhibitors such as indomethacin. Rabbit platelets were also responsive to equine platelet-activating factor. The release of equine platelet-activating factor was a rapid reaction with near maximal secretion taking place in 30 seconds. Addition of equine platelet-activating factor to washed equine platelets stimulated platelet aggregation which could not be inhibited by the presence of aspirin or indomethacin. Platelets preincubated with equine platelet-activating factor became specifically desensitized to equine platelet-activating factor while remaining responsive to other platelet stimuli such as collagen and epinephrine. The following biochemical properties of equine platelet-activating factor are identical to those properties of 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC): stability upon exposure to air and acid; loss of functional activity after basecatalyzed methanolysis with subsequent acylation that returned all functional activity; and identical relative mobilities on silica gel G plates developed with chloroform:methanol:water (65:35:6, volume/volume). The combined functional and biochemical characteristics of equine platelet-activating factor strongly suggest identity between this naturally occurring, immunologically derived equine factor and AGEPC.


1985 ◽  
Vol 101 (2) ◽  
pp. 427-440 ◽  
Author(s):  
E Bartnik ◽  
M Osborn ◽  
K Weber

To screen invertebrate tissues for the possible expression of intermediate filaments (IFs), immunofluorescence microscopy with the monoclonal antibody anti-IFA known to detect all mammalian IF proteins was used (Pruss, R. M., R. Mirsky, M. C. Raff, R. Thorpe, A. J. Dowding, and B. H. Anderton. 1981. Cell, 27:419-428). In a limited survey, the lower chordate Branchiostoma as well as the invertebrates Arenicola, Lumbricus, Ascaris, and Helix pomatia revealed a positive reaction primarily on epithelia and on nerves, whereas certain other invertebrates appeared negative. To assess the nature of the positive reaction, Helix pomatia was used since a variety of epithelia was strongly stained by anti-IFA. Fixation-extraction procedures were developed that preserve in electron micrographs of esophagus impressive arrays of IFs as tonofilament bundles. Fractionation procedures performed on single cell preparations document large meshworks of long and curvilinear IF by negative stain. These structures can be purified. One- and two-dimensional gels show three components, all of which are recognized by anti-IFA in immunoblotting: 66 kD/pl 6.35, 53 kD/pl 6.05, and 52 kD/pl 5.95. The molar ratio between the larger and more basic polypeptide and the sum of the two more acidic forms is close to 1. After solubilization in 8.5 M urea, in vitro filament reconstitution is induced when urea is removed by dialysis against 2-50 mM Tris buffer at pH 7.8. The reconstituted filaments contain all three polypeptides. The results establish firmly the existence of invertebrate IFs outside neurones and demonstrate that the esophagus of Helix pomatia displays IFs which in line with the epithelial morphology of the tissue could be related to keratin IF of vertebrates.


2015 ◽  
Vol 2 (2) ◽  
pp. 229-237
Author(s):  
Istiaq Ahmed ◽  
Md Tofazzal Islam ◽  
Md Akhter Hossain Chowdhury ◽  
Md Kamruzzaman

This study was carried out to isolate, screen and characterize arsenic (As) resistant bacteria from As contaminated soils of Dumrakandi and Matlab under Faridpur and Chandpur districts and to evaluate their efficiency in reducing As toxicity against rice seedlings during germination. Thirteen strains were isolated from the soils which showed resistance to different levels of sodium arsenite (viz. 5, 10, 20 and 40 mM) in both agar plate and broth assay using BSMY I media. Among the isolates, BTL0011, BTL0012, BTL0015 and BTL0022 showed highest resistance to 40 mM sodium arsenite. Gram staining and KOH solubility test revealed that five strains were gram positive and rest eight was gram negative. They grew well in the liquid media at pH 5.5 to 8.5. In-vitro rice seedling bioassay with two superior isolates (BTL0011 and BTL0022) revealed that As resistant strains significantly enhanced seed germination of BRRI dhan29 and BRRI dhan47 at 60 ppm As. This study was laid out in CRD with three replications. The performance of BTL 0022 was superior to BTL0011. The overall results suggest that BTL0011 and BTL0022 can be used for bioremediation of As contaminated soils and to increase the germination and seedling growth of rice in As contaminated soils.Res. Agric., Livest. Fish.2(2): 229-237, August 2015


Author(s):  
Dennis Zimmermann ◽  
Alisha N. Morganthaler ◽  
David R. Kovar ◽  
Cristian Suarez

FEBS Letters ◽  
1998 ◽  
Vol 428 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Kenzo Ohtsuki ◽  
Toshiro Maekawa ◽  
Shigeyoshi Harada ◽  
Atsushi Karino ◽  
Yuko Morikawa ◽  
...  

2019 ◽  
Vol 166 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Jan M Klenk ◽  
Max-Philipp Fischer ◽  
Paulina Dubiel ◽  
Mahima Sharma ◽  
Benjamin Rowlinson ◽  
...  

AbstractCytochrome P450 monooxygenases (P450s) play crucial roles in the cell metabolism and provide an unsurpassed diversity of catalysed reactions. Here, we report the identification and biochemical characterization of two P450s from Arthrobacter sp., a Gram-positive organism known to degrade the opium alkaloid papaverine. Combining phylogenetic and genomic analysis suggested physiological roles for P450s in metabolism and revealed potential gene clusters with redox partners facilitating the reconstitution of the P450 activities in vitro. CYP1232F1 catalyses the para demethylation of 3,4-dimethoxyphenylacetic acid to homovanillic acid while CYP1232A24 continues demethylation to 3,4-dihydroxyphenylacetic acid. Interestingly, the latter enzyme is also able to perform both demethylation steps with preference for the meta position. The crystal structure of CYP1232A24, which shares only 29% identity to previous published structures of P450s helped to rationalize the preferred demethylation specificity for the meta position and also the broader substrate specificity profile. In addition to the detailed characterization of the two P450s using their physiological redox partners, we report the construction of a highly active whole-cell Escherichia coli biocatalyst expressing CYP1232A24, which formed up to 1.77 g l−1 3,4-dihydroxyphenylacetic acid. Our results revealed the P450s’ role in the metabolic pathway of papaverine enabling further investigation and application of these biocatalysts.


Sign in / Sign up

Export Citation Format

Share Document