scholarly journals FORMULATION AND NUTRITIONAL EVALUATION OF HIGH PROTEIN DIET PRODUCED FROM YELLOW MAIZE (Zea mays) SOYA BEAN (GLYCINE MAX), PUMPKIN (Cucurbita pepo) SEED AND FISH (Alestes nurse) MEAL

2021 ◽  
Vol 2 (2) ◽  
pp. 36-65
Author(s):  
G. Chamba ◽  
A. S. Falmata ◽  
B. P. Bintu ◽  
B. K. Maryam ◽  
S. Modu

  The aim of this study was to produce high protein diet for growing children from yellow maize, soya bean, pumpkin seed and fish meal. The raw materials were subjected to different processing techniques. The yellow maize (YM) was blended with different proportions of soya bean (SB), pumpkin seeds (PS) and fish meal (FM) with a view to formulating a high protein diet to address protein Energy Malnutrition. The formulated food Blends were; Blend 1 (70 % YM: 30 % SB), Blend 2 (70 % YM: 30 % PS), Blend 3 (70 % YM: 30 % FM), Blend 4 (70 % YM: 20 % SB :10 % PS), Blend 5 (70 % YM: 15 % SB: 15 % FM), Blend 6 (60 % YM: 20 % PS: 20 % FM), and a therapeutic milk (F-100) was used as a control diet. The raw materials and the food Blends were assayed for proximate, mineral, vitamin content and amino acid profile. The data obtained were analyzed statistically. The results of the proximate composition showed significant (p<0.05) decrease in moisture, protein, total fat and fibre contents of the fermented yellow maize, roasted soya bean and pumpkin seed while that of the dried fish showed significant (P<0.05) increase.  The results shows that food Blend 6 had highest values for protein (17.77±0.09 %), total fat (6.00±0.27%) and total energy (388.10±0.29 Kcal/100g). A Significant (P<0.05) difference was observed in the mineral element content of yellow maize and fish meal after fermentation and drying respectively, while an increase was observed in roasted soya bean and pumpkin seed. The food Blend 5 recorded higher value for Na, and K, while the control diet had higher value for P, Zn, Fe and Cu. An increase in B-group vitamins, and vitamin C, were observed in the samples, while decreased in fat soluble vitamins A and E were observed in fermented yellow maize and dried fish, while decrease was observed in roasted soybean and pumpkin seed. The control diet had higher value for all the vitamins analyzed compared to the food Blends, except for vitamin A and E. The result of the amino acid profile showed that the levels of the essential amino acids were increased in the fermented yellow maize, and dried fish, while a reduction was observed in roasted soya bean and pumpkin seed. However, all the prepared food Blends were enhanced in terms of essential amino acid, but more enhanced in food Blend 6, followed very closely by food Blend 5. The amino acid profile of the control Blend was higher than those of the food Blends1, 2, 3 and 4. Thus, the high energy and protein contents of the formulated diets are adequate in the management of PEM.

2000 ◽  
Vol 350 (3) ◽  
pp. 685-692 ◽  
Author(s):  
Lori M. STEAD ◽  
Margaret E. BROSNAN ◽  
John T. BROSNAN

Recent evidence suggests that an increased plasma concentration of the sulphur amino acid homocysteine is a risk factor for the development of vascular disease. The tissue(s) responsible for homocysteine production and export to the plasma are not well known. However, given the central role of the liver in amino acid metabolism, we developed a rat primary hepatocyte model in which homocysteine (and cysteine) production and export were examined. The dependence of homocysteine export from incubated hepatocytes on methionine concentration fitted well to a rectangular hyperbola, with half-maximal homocysteine export achieved at methionine concentrations of approx. 0.44mM. Hepatocytes incubated with 1mM methionine and 1mM serine (a substrate for the transulphuration pathway of homocysteine removal) produced and exported significantly less homocysteine (25–40%) compared with cells incubated with 1mM methionine alone. The effects of dietary protein on homocysteine metabolism were also examined. Rats fed a 60% protein diet had a significantly increased total plasma homocysteine level compared with rats fed a 20% protein diet. Invitro effects of dietary protein were examined using hepatocytes isolated from animals maintained on these diets. When incubated with 1mM methionine, hepatocytes from rats fed the high protein diet exported significantly more homocysteine compared with hepatocytes from rats fed the normal protein diet. Inclusion of serine significantly lowered homocysteine export in the normal protein group, but the effect was more marked in the high protein group. Invivo effects of serine were also examined. Rats fed a high protein diet enriched with serine had significantly lower total plasma homocysteine (25–30%) compared with controls. These data indicate a significant role for the liver in the regulation of plasma homocysteine levels.


2008 ◽  
Vol 100 (2) ◽  
pp. 283-286 ◽  
Author(s):  
Konstantina Dipla ◽  
Maria Makri ◽  
Andreas Zafeiridis ◽  
Dimitrios Soulas ◽  
Sofia Tsalouhidou ◽  
...  

Resistance exercise is recommended to individuals following high-protein diets in order to augment changes in body composition. However, alterations in macronutrient composition may compromise physical performance. The present study investigated the effects of an isoenergetic high-protein diet on upper and lower limb strength and fatigue during high-intensity resistance exercise. Ten recreationally active women, aged 25–40 years, followed a control diet (55, 15 and 30 % of energy from carbohydrate, protein and fat, respectively) and a high-protein diet (respective values, 30, 40 and 30) for 7 d each in a random counterbalanced design. Each participant underwent strength testing of upper limb (isometric handgrip strength and endurance) and lower limb (four sets of sixteen maximal knee flexions and extensions on an isokinetic dynamometer) before and after applying each diet. Body weight, body fat and RER were significantly reduced following the high-protein diet (P < 0·05). No differences were found between diets in any of the strength performance parameters (handgrip strength, handgrip endurance, peak torque, total work and fatigue) or the responses of heart rate, systolic and diastolic arterial pressure, blood lactate and blood glucose to exercise. Women on a short-term isoenergetic high-protein, moderate-fat diet maintained muscular strength and endurance of upper and lower limbs during high-intensity resistance exercise without experiencing fatigue earlier compared with a control diet.


1990 ◽  
Vol 259 (5) ◽  
pp. E614-E625 ◽  
Author(s):  
P. Fafournoux ◽  
C. Remesy ◽  
C. Demigne

The aim of the present work was to evaluate in vivo the role of the transport step in hepatic amino acid metabolism. To vary hepatic utilization of amino acids, rats were adapted to diets containing various concentrations of casein (5, 15, and 60%). In rats fed 5 or 15% casein diets, Gln and Glu were released by the liver, and there was a significant uptake of Ala. Hepatic fluxes of amino acids increased considerably after adaptation to high-casein diet (up to 1.55 mumol.min-1.g liver-1 for Ala), because of the rise in afferent concentrations as well as enhanced uptake percentage (peaking at 60–75% for most glucogenic amino acids). Adaptation to a high-protein diet led to induction of not only system A but also of most of the other transport systems (Gly, anionic, T, y+, and to a lesser extent system N); only systems ASC and L were unchanged. The study of amino acid repartition between liver and plasma with different diets indicates that transport could modulate utilization of Ala, Ser, Thr, Gly, Gln, and Asp. For Arg and Asn, present in very low concentrations in liver under any condition, the transport step should be the major locus of control of their metabolism. For amino acids chiefly transported by nonconcentrative systems, such as aromatic amino acids, cellular metabolism could also be limited by the transport process. In conclusion, during adaptation to a high-protein diet, there is apparently a coordinated adaptation of amino acid transport and of their intracellular metabolism. For some amino acids, induction of catabolic enzymes seems greater than that of transport, so that the transport step may play an important role in control of metabolic fluxes. For example, concentration of amino acids such as Thr may be markedly depressed in rats adapted to a high-protein diet.


1997 ◽  
Vol 71 (4) ◽  
pp. 351-354 ◽  
Author(s):  
J.E. Sudati ◽  
F. Rivas ◽  
B. Fried

AbstractThe effects of a high protein diet on the host-parasite relationship of Echinostoma caproni in ICR mice were studied. The customized high protein diet (CHPD) contained 64% casein as a source of protein. The control diet consisted of a standard laboratory diet containing 23% casein as a source of protein. Mice were each fed 25 cysts of E. caproni by stomach tube and necropsied 2, 3, 4 and 5 weeks postinfection. The weight of mice on the CHPD did not differ significantly from mice on the control diet. Worm recoveries were also unaffected by the high protein diet. There was a significant decline in worm dry weight, body area and uterine egg counts in worms from mice on the CHPD compared with those on the control diet. Worms from hosts on the CHPD were located more posteriad in the gut than those recovered from mice on the control diet. Changes in the mouse diet adversely affected E. caproni maturation and growth, possibly by altering the immediate host mucosal environment and making it less conducive to worm development.


1990 ◽  
Vol 258 (5) ◽  
pp. R1095-R1100 ◽  
Author(s):  
B. S. Daniels ◽  
T. H. Hostetter

Vasoactive hormonal response to two levels of dietary protein intake was studied in seven healthy adult volunteers. The subjects were randomly placed on a 2-g.kg-1.day-1 (high) or 0.55-g.kg-1.day-1 (low) diet using a crossover design and were studied on the morning of the 5th day and again after 24 h of indomethacin treatment. Plasma renin activity (PRA), aldosterone, vasopressin, and urinary excretion of 6-ketoprostaglandin F1 alpha (PGF1 alpha) were significantly higher on the high-protein diet despite constancy of body weight, blood pressure, pulse, urinary sodium and potassium excretion, and plasma amino acid levels. After treatment with cyclooxygenase inhibitor indomethacin, 6-keto-PGF1 alpha excretion was equalized, but the elevated PRA and aldosterone levels persisted on the high-protein diet, suggesting that PRA and aldosterone elevations do not depend entirely on prostanoid release. We conclude that chronic augmentation of dietary protein intake is accompanied by alterations of vasoactive hormones, which persist for up to 10 h postprandially and are independent of elevated plasma amino acid levels. Such hormonal alterations may mediate some of the dietary protein-mediated changes in renal hemodynamics.


1960 ◽  
Vol 6 (2) ◽  
pp. 140-147 ◽  
Author(s):  
Martin B Williamson ◽  
John M Passmann

Abstract A comparison of the excretion of amino acids by normal and wounded rats on a high protein and protein-free diet was made. The nontaurine amino acid nitrogen excretion was found to be the same the control and wounded animals, although the rats on the high protein diet excreted considerably more amino acid nitrogen than did those on the protein-free diet. The wounded animals on the high protein diet had the same total nitrogen output but excreted significantly larger amounts of taurine than did the nonwounded controls. The wounded animals given the protein-free diet excreted the same amount of taurine but produced more total nitrogen than did the control rats. On the basis of the total nitrogen-taurine excretion ratios, data indicate that cystine is conserved by the wounded as compared to the normal animals.


Sign in / Sign up

Export Citation Format

Share Document