scholarly journals In vivo antioxidant activity and its protective effects of green tea extract

Author(s):  
Rinkiko Suguro ◽  
Sheng Xiong
Food Research ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 468-473
Author(s):  
Melanie Cornelia ◽  
M. Anggraini

Okra (Abelmoschus esculentus L.) seeds and green tea (Camellia sinensis) have been known have many beneficial functions for human’s health, because of the high antioxidant contents and anti-cholesterol activities that can prevent cardiovascular disease. This research is aimed to make the formulation of healthy drink from okra seed juice with the addition of green tea extract. Green tea used was selected from green tea that has the best antioxidant activity from ten samples of green tea in the market. The best antioxidant activity data was found in Jawa tea extract with IC50 85.28±0.21 µg/mL which was formulated with the extract of okra seeds, made in the ratio of 1: 4. Selected healthy drinks were tested for physical characteristics, antioxidant activities, and sensory tests, and have antioxidant activity IC50 222.16±1.38 µg/mL. Further research was to analyze the potential of drinks in reducing cholesterol in vitro and in vivo ways. In vitro, 500 ppm drinks were able to inhibit cholesterol up to 47.55±0.76% and in vivo, there was a significant decrease in cholesterol levels after drink for 21 days with cholesterol reduction to 35.50±2.37%, triglycerides decrease 19.39±3.10%, LDL decrease 34.76±2.62%, and an increase of HDL to 94.74±16.53%.


2013 ◽  
Vol 49 (2) ◽  
pp. 341-349 ◽  
Author(s):  
Tariq Mahmood ◽  
Naveed Akhtar ◽  
Barkat Ali Khan ◽  
Akhtar Rasul ◽  
Haji M. Shoaib Khan

Complex multiple emulsions have an excellent ability to fill large volumes of functional cosmetic agents. This study was aimed to encapsulate large volume of green tea in classical multiple emulsion and to compare its stability with a multiple emulsion without green tea extract. Multiple emulsions were developed using Cetyl dimethicone copolyol as lipophilic emulsifier and classic polysorbate-80 as hydrophilic emulsifier. Multiple emulsions were evaluated for various physicochemical aspects like conductivity, pH, microscopic analysis, rheology and these characteristics were followed for a period of 30 days in different storage conditions. In vitro and in vivo skin protection tests were also performed for both kinds of multiple emulsions i.e. with active (MeA) and without active (MeB). Both formulations showed comparable characteristics regarding various physicochemical characteristics in different storage conditions. Rheological analysis showed that formulations showed pseudo plastic behavior upon continuous shear stress. Results of in vitro and in vivo skin protection data have revealed that the active formulation has comparable skin protection effects to that of control formulation. It was presumed that stable multiple emulsions could be a promising choice for topical application of green tea but multiple emulsions presented in this study need improvement in the formula, concluded on the basis of pH, conductivity and apparent viscosity data.


2021 ◽  
Vol 68 (1) ◽  
pp. 126-136
Author(s):  
U. Chasanah ◽  
N. Mahmintari ◽  
F. Hidayah ◽  
F.A. El Maghfiroh ◽  
D. Rahmasari ◽  
...  

Abstract This study aimed to prepare a niosomal gel of green tea (Camellia sinensis) extract containing catechins, mostly epigallocatechin-3-gallate (ECGC), as a potent antioxidant. Niosomes can increase EGCG's stability and penetration into the skin for a better therapeutic effect. Niosomes were prepared by a thin-layer hydration method, were evaluated for their vesicle shape, particle size, polydispersity index, zeta potential and entrapment efficiency, and then incorporated into gels using sodium alginate as a gelling agent. Three niosomal gel formulations were prepared with different concentrations of niosomes green tea extract. Afterwards, organoleptic properties, chemical and physical characteristics, antioxidant activity, and stability and irritability of the niosomal gels were investigated. The different concentrations of green tea extract had a significant effect on the physical characteristics, but not on the chemical ones. Its antioxidant activity was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging method. The 50% extract green tea niosomes gel showed the highest inhibition value (25.13%). The stability was determined by freeze–thaw and real-time methods; they showed a decrease in pH, but still within the pH range of skin. The irritability test used was the Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) method, which showed no irritation for all formulas. In conclusion, 50% green tea extract niosomes gel results showed it to be the best formulation with optimal antioxidant results.


2011 ◽  
Vol 194-196 ◽  
pp. 734-741
Author(s):  
Li Na Yu ◽  
Dong Feng Wang ◽  
Qing Li Yang ◽  
Hai Yan Li ◽  
Bing Jie Liu ◽  
...  

The purpose of this paper is to investigate a new type of resin of chitosan cerium encapsulated green tea extract microspheres (RCCM-GTE) prepared by the reversed-phase suspension cross-linking polymerization and study the scavenging activity against DPPH free radical. The results showed that RCCM-GTE was a type of deep brown-yellow spherical resin with smooth surface and it presented uniform and narrow particle size distribution as determined by the Laser Particles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier Transform Infrared Spectroscopy (FT-IR) and differential scanning calorimetry (DSC) study demonstrated that there was cerium existing in RCCM-GTE. The polyphenolic compounds existed in RCCM-GTE and the total content of polyphenolic compounds encapsulated in RCCM-GTE was found to be 92.550±1.145 μg/g. It is considered that the good antioxidant activity of RCCM-GTE was the comprehensive results of the action of tea polysaccharide-protein conjugate, polyphenolic compounds, cerium and Schiff base chitosan. Investigation showed that a lot of extracts coming from agriculture and food industry contain reactive components of polyphenolic compounds and polysaccharides. It can be effective in protection of human beings from free radical damage if these extracts are directly or after the extraction and purification added to food as natural food antioxidant or they are prepared micospheres reacted with some biopolymers through coordination as a health food. Then the emerging area of research on encapsulating GTE in chitosan cerium resin must have a broad developing prospect.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
F. Piran ◽  
Z. Khoshkhoo ◽  
S. E. Hosseini ◽  
M. H. Azizi

Applying bioactive ingredients in the formulation of foods instead of artificial preservatives is problematic because bioactive ingredients are unstable and sensitive to environmental conditions. The present study aimed to control the antioxidant activity of green tea extract (GT) through encapsulating in chitosan nanoparticles (CS-NP). The synthesized nanoparticles were analyzed by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The encapsulation efficiency (EE), particle size, zeta potential, and polydispersity index (PDI) of GT-loaded CS-nanoparticles (CS-NP-GT) were assessed. Based on the results, the particle size and zeta potential related to the ratio of CS to GT of 1 : 0.5 were obtained as 135.43 ± 2.52 nm and 40.40 ± 0.2 mV, respectively. Furthermore, the results of FT-IR and XRD confirmed the validity of encapsulating GT in CS-NP. In addition, the antioxidant activity of GT increased after nanoencapsulation since the IC50 value of CS-NP-GT decreased to 6.13 ± 0.12 μg/ml. Finally, applying these particles for delivering GT polyphenols in foods is regarded as promising.


Sign in / Sign up

Export Citation Format

Share Document