Essentials for Accurate Gauging for Compressible Material

1929 ◽  
Vol 2 (4) ◽  
pp. 539-544
Author(s):  
Roy W. Brown

Abstract Variables affecting the accurate thickness measurement of compressible sheet materials such as fabric and rubber stock are indicated as: 1. Linear accuracy of the micrometer. 2. Pressure exerted by the micrometer foot. 3. Size of the micrometer foot. 4. Friction in the micrometer mechanism. A unit area foot pressure of (70.3 gram. per sq. cm.) 1 lb. per sq. in. has been found satisfactory. Friction in the micrometer mechanism is shown to limit the minimum foot pressure to approximately (199.5 grams) .44 lbs., hence a (1.906 cms.) 3/4″ diameter circular foot, or equivalent, is required on present available mechanical gauges. Methods of meeting the above fundamental requirements are indicated for optical and magnetic gauges. Limiting factors in the accuracy sccurable by the use of dielectric gauges arc discussed. The necessity for standardised practices is so apparent as to command consideration of all concerned.

Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Author(s):  
Elrnar Zeitler

Considering any finite three-dimensional object, a “projection” is here defined as a two-dimensional representation of the object's mass per unit area on a plane normal to a given projection axis, here taken as they-axis. Since the object can be seen as being built from parallel, thin slices, the relation between object structure and its projection can be reduced by one dimension. It is assumed that an electron microscope equipped with a tilting stage records the projectionWhere the object has a spatial density distribution p(r,ϕ) within a limiting radius taken to be unity, and the stage is tilted by an angle 9 with respect to the x-axis of the recording plane.


Author(s):  
J. Curtis ◽  
K. S. Schwartz ◽  
R. P. Apkarian

A scanning electron microscope (SEM) study was made of the effect of adrenocorticotropic hormone (ACTH) on the size and numbers of fenestrae/unit area in the capillary endothelium of the zona fasciculata (ZF) of the rat adrenal. The stimulatory effect of ACTH on cholesterol uptake via high density lipoproteins in the rat and evidence for the secretion of glucocorticoids by exocytosis of lipid droplets described by Rhodin suggest that endothelial change may accompany these transport phenomena.Twelve rats received two Dexamethasone (DEX) ip injections (25 μg DEX/100 g body wt.), the first at 8 PM and the second at 8 AM the next day, to inhibit the release of endogenous ACTH by the anterior pituitary. The animals were then divided into two groups. Six animals received only saline vehicle and six rats received ACTH (100 ng/100 g body wt.).


Author(s):  
George H. Herbener ◽  
Antonio Nanci ◽  
Moise Bendayan

Protein A-gold immunocytochemistry is a two-step, post-embedding labeling procedure which may be applied to tissue sections to localize intra- and extracellular proteins. The key requisite for immunocytochemistry is the availability of the appropriate antibody to react in an immune response with the antigenic sites on the protein of interest. During the second step, protein A-gold complex is reacted with the antibody. This is a non- specific reaction in that protein A will combine with most IgG antibodies. The ‘label’ visualized in the electron microscope is colloidal gold. Since labeling is restricted to the surface of the tissue section and since colloidal gold is particulate, labeling density, i.e., the number of gold particles per unit area of tissue section, may be quantitated with ease and accuracy.


Author(s):  
John F. Mansfield ◽  
Douglas C. Crawford

A method has been developed that allows on-line measurement of the thickness of crystalline materials in the analytical electron microscope. Two-beam convergent beam electron diffraction (CBED) patterns are digitized from a JEOL 2000FX electron microscope into an Apple Macintosh II microcomputer via a Gatan #673 CCD Video Camera and an Imaging Systems Technology Video 1000 frame-capture board. It is necessary to know the lattice parameters of the sample since measurements are made of the spacing of the diffraction discs in order to calibrate the pattern. The sample thickness is calculated from measurements of the spacings of the fringes that are seen in the diffraction discs. This technique was pioneered by Kelly et al, who used the two-beam dynamic theory of MacGillavry relate the deviation parameter (Si) of the ith fringe from the exact Bragg condition to the specimen thickness (t) with the equation:Where ξg, is the extinction distance for that reflection and ni is an integer.


Author(s):  
K. Cowden ◽  
B. Giammara ◽  
T. Devine ◽  
J. Hanker

Plaster of Paris (calcium sulfate hemihydrate, CaSO4. ½ H2O) has been used as a biomedical implant material since 1892. One of the primary limiting factors of these implants is their mechanical properties. These materials have low compressive and tensile strengths when compared to normal bone. These are important limiting factors where large biomechanical forces exist. Previous work has suggested that sterilization techniques could affect the implant’s strength. A study of plaster of Paris implant mechanical and physical properties to find optimum sterilization techniques therefore, could lead to a significant increase in their application and promise for future use as hard tissue prosthetic materials.USG Medical Grade Calcium Sulfate Hemihydrate Types A, A-1 and B, were sterilized by dry heat and by gamma radiation. Types A and B were additionally sterilized with and without the setting agent potassium sulfate (K2SO4). The plaster mixtures were then moistened with a minimum amount of water and formed into disks (.339 in. diameter x .053 in. deep) in polyethylene molds with a microspatula. After drying, the disks were fractured with a Stokes Hardness Tester. The compressive strengths of the disks were obtained directly from the hardness tester. Values for the maximum tensile strengths σo were then calculated: where (P = applied compression, D = disk diameter, and t = disk thickness). Plaster disks (types A and B) that contained no setting agent showed a significant loss in strength with either dry heat or gamma radiation sterilization. Those that contained potassium sulfate (K2SO4) did not show a significant loss in strength with either sterilization technique. In all comparisons (with and without K2SO4 and with either dry heat or gamma radiation sterilization) the type B plaster had higher compressive and tensile strengths than that of the type A plaster. The type A-1 plaster however, which is specially modified for accelerated setting, was comparable to that of type B with K2SO4 in both compressive and tensile strength (Table 1).


Author(s):  
J.D. Geller ◽  
C.R. Herrington

The minimum magnification for which an image can be acquired is determined by the design and implementation of the electron optical column and the scanning and display electronics. It is also a function of the working distance and, possibly, the accelerating voltage. For secondary and backscattered electron images there are usually no other limiting factors. However, for x-ray maps there are further considerations. The energy-dispersive x-ray spectrometers (EDS) have a much larger solid angle of detection that for WDS. They also do not suffer from Bragg’s Law focusing effects which limit the angular range and focusing distance from the diffracting crystal. In practical terms EDS maps can be acquired at the lowest magnification of the SEM, assuming the collimator does not cutoff the x-ray signal. For WDS the focusing properties of the crystal limits the angular range of acceptance of the incident x-radiation. The range is dependent upon the 2d spacing of the crystal, with the acceptance angle increasing with 2d spacing. The natural line width of the x-ray also plays a role. For the metal layered crystals used to diffract soft x-rays, such as Be - O, the minimum magnification is approximately 100X. In the worst case, for the LEF crystal which diffracts Ti - Zn, ˜1000X is the minimum.


1997 ◽  
Vol 40 (2) ◽  
pp. 400-404 ◽  
Author(s):  
Virginia A. Hinton ◽  
Winston M. C. Arokiasamy

It has been hypothesized that typical speech movements do not involve large muscular forces and that normal speakers use less than 20% of the maximum orofacial muscle contractile forces that are available (e.g., Amerman, 1993; Barlow & Abbs, 1984; Barlow & Netsell, 1986; DePaul & Brooks, 1993). However, no direct evidence for this hypothesis has been provided. This study investigated the percentage of maximum interlabial contact pressures (force per unit area) typically used during speech production. The primary conclusion of this study is that normal speakers typically use less than 20% of the available interlabial contact pressure, whether or not the jaw contributes to bilabial closure. Production of the phone [p] at conversational rate and intensity generated an average of 10.56% of maximum available interlabial pressure (MILP) when jaw movement was not restricted and 14.62% when jaw movement was eliminated.


Sign in / Sign up

Export Citation Format

Share Document