Studies in the Vulcanization of Rubber. V. Dielectric Constant and Power Factor of Vulcanized Rubber

1932 ◽  
Vol 5 (3) ◽  
pp. 367-383
Author(s):  
Donald W. Kitchin

Abstract 1. Power factor and dielectric constant data have been given for vulcanized rubber samples tested over a wide range of composition, temperature, and frequency. 2. The real identity of the agents responsible for the peculiar dielectric behavior is not known. It seems probable that these agents are the rubber-sulfur molecules themselves. because the effects increase, under proper conditions, directly with per cent combined sulfur. 3. The effect of increasing sulfur content on the dielectric behavior is complex; it modifies not only these supposed agents themselves, but also the stiffness of their environment. Moreover, at a given sulfur content the agents are not identical but differ widely in relaxation time, and therefore in ability to respond; and with progressive addition of sulfur, the rubber does not increase continuously in stiffness, but, at a composition which depends on the temperature, passes rather abruptly from a soft to a hard state. 4. The temperature at which the transition from one state to the other occurs increases almost linearly with the sulfur content from −90° to +90° C. 5. In the soft state the behavior of vulcanized rubber with respect to compressibility, thermal expansion, dielectric constant, and power factor, and probably other properties, resembles that of a viscous liquid; in the hard state, that of a solid. 6. Rubber with less than 2 per cent combined sulfur shows low dielectric constant and power factor over the whole temperature and frequency range investigated; hard rubber, only at room temperature, where its rigidity restricts the response to the field. 7. Hard rubber, although not an electret, can hold an electric charge for 24 hours or more. The low dielectric constants of high-sulfur rubber samples found in measurements with a ballistic galvanometer were due to the disparity between its period of about one second and the long discharge periods of the samples. This led to the idea of dipole compensation shown to be incorrect by the high temperature results. 8. At temperatures sufficiently high to permit free response, the dielectric constant increases with sulfur content over the whole range. 9. If a dipole mechanism is involved, addition of sulfur to more than half the double bonds does not cause the dipole moment of the molecules to vanish owing to compensation. 10. The power factor of vulcanized rubber sheets decreases on stretch. 11. The data neither prove nor disprove a dipole mechanism. A critical experiment to settle this question is still wanting.

1997 ◽  
Vol 9 (3) ◽  
pp. 333-344 ◽  
Author(s):  
Hiroshi Seino ◽  
Osamu Haba ◽  
Amane Mochizuki ◽  
Masahiro Yoshioka ◽  
Mitsuru Ueda

Fluorinated polyimides (PIs) with low dielectric constant and high dimensional stability have been developed using polyisoimides (PIIs) as a polyimide precursor. The PIIs were prepared by the ring-opening polyaddition of the dianhydrides pyromellitic dianhydride, biphenyltetracarboxylic dianhydride and 4, 4′-hexafluoropropylidenedi(phthalic anhydride) with the diamines 2, 2′-dimethylbenzidine and 2, 2′-bis(trifluoromethyl)benzidine, followed by treatment with trifluoroacetic anhydride/triethylamine or dicyclohexylcarbodiimide in N;N-dimethylacetamide. The PIIs were soluble in a wide range of solvents including dipolar aprotic solvents, cyclohexanone and tetrahydrofuran at room temperature, and easy to convert to corresponding PIs by high thermal treatment. The resulting PIs showed low dielectric constants of less than 3 at 1 MHz as well as low CTEs. Furthermore, during the isomerization reaction, migration of copper in the PI film was hardly observed.


1993 ◽  
Vol 8 (7) ◽  
pp. 1736-1741 ◽  
Author(s):  
L.W. Hrubesh ◽  
L.E. Keene ◽  
V.R. Latorre

We have measured the real (dielectric constant) and imaginary (loss factor) components of the complex relative permittivity at 298 K using microwave frequencies (2, 10, and 18–40 GHz) for bulk SiO2-aerogels and for two types of organic aerogels, resorcinol-formaldehyde (RF) and melamine-formaldehyde (MF). Measured dielectric constants are found to vary linearly between values of 1.0 and 2.0 for aerogel densities from 10 to 500 kg/m3. For the same range of densities, the measured loss tangents vary linearly between values of 2 × 10−4 and 7 × 10−2. The observed linearity of the dielectric properties with density in aerogels at microwave frequencies shows that their dielectric behavior is more gas-like than solid-like. The dielectric properties of aerogels are shown to be significantly affected by the adsorbed water internal to the bulk material. For example, water accounts for 70% of the dielectric constant and 70% of the loss at microwave frequencies for silica aerogels. Because of their very high porosity, even with the water content, the aerogels are among the few materials exhibiting such low dielectric properties. Our measurements show that aerogels with greater than 99% porosity have dielectric constants less than 1.03; these are the lowest values ever reported for a bulk solid material.


2018 ◽  
Vol 31 (8) ◽  
pp. 986-995
Author(s):  
Lei Wang ◽  
Guifen Gong ◽  
Junyao Shen ◽  
Jinsong Leng

Polyimide (PI)/titanium dioxide (TiO2) composite nanofibers (NFs) with average diameters of 200–250 nm were synthesized via electrospinning. The total number density of dipoles decreased significantly, owing to the porous structures and compact interface between TiO2 NPs and PI matrix. All PI/TiO2 NFs maintain low dielectric constants and losses. For example, the dielectric constants of PI/TiO2-6% NFs are all lower than 2.6, being exposed to temperatures from 25°C to 200°C. Meantime, the dielectric losses of PI/TiO2-6% NFs are below 0.005. For ultraviolet (UV)-light shielding performance, the PI/TiO2 NFs exhibited good UV-light shielding and corresponding anti-photoaging properties. The reason can be ascribed from high UV-light absorption and scattering ability in the TiO2 NPs. The best UV-light absorption (average: 3.71) and corresponding absorption decay (15.13%) were achieved for optimized PI/TiO2-6% NFs. Other fundamental characteristics, such as the thermal stability, mechanical tensile property, and hydrophobicity, were also investigated. Such low dielectric constant PI/TiO2 composite NFs can be alternatively chosen under a longtime UV-light exposing condition.


1986 ◽  
Vol 72 ◽  
Author(s):  
G. V. Chandrashekhar ◽  
M. W. Shafer

AbstractDielectric properties have been measured for a series of porous and fully densified silica glasses, prepared by the sol-gel technique starting from Si-methoxide or Si-fume. The results for the partially densified glasses do not show any preferred orientation for porosity. When fully densified (˜2.25 gms/cc) without any prior treatment of the gels, they have dielectric constants of ≥ 6.5 and loss factors of 0.002 at 1 MHz, compared to values of 3.8 and <0.001 for commercial fused silica. There is no corresponding anomaly in the d.c. resistivity. Elemental carbon present to the extent of 400–500 ppm is likely to be the main cause for this enhanced dielectric constant. Extensive cleaning of the gels prior to densification to remove this carbon were not completely successful pointing to the difficulty in preparing high purity, low dielectric constant glasses via the organic sol-gel route at least in the bulk form.


Geophysics ◽  
1981 ◽  
Vol 46 (3) ◽  
pp. 322-332 ◽  
Author(s):  
James N. Lange ◽  
Steven S. Shope

The application of electromagnetic (EM) techniques to well logging is initiated in an environment dominated by the properties of the drilling fluids. An impulse technique using nanosecond pulses is applied to a coaxial waveguide containing drilling fluids to measure the velocity (dielectric constant ε) and absorption (attenuation coefficient α) of EM impulses. It is the large difference in dielectric constants of water and oil which makes EM propagation techniques attractive for logging. Dielectric properties of some nondispersed drilling fluids (bentonite and attapulgite clays) are found to be largely dependent upon the volume of water present. Both bentonite and attapulgite clays exhibit the same range of dielectric constants (ε = 81 → 75) when the weight percent of clay is increased to 10 percent. In contrast, the microwave attenuations of these two clays are quite different, with that of the bentonite increasing at about 4 times the rate of the attapulgite suspensions. Microwave attenuation measured for a variety of commercial drilling fluids varies over a wide range, with the lignosulfonates the largest (91 dB/m) and oil inverts the smallest (3 dB/m). The oil inverts also have a small dielectric constant (ε = 3 → 6). Temperature dependence of the attenuation for these same drilling fluids is determined in the range from 23 °C to 45 °C to indicate their behavior under in situ conditions.


1999 ◽  
Vol 565 ◽  
Author(s):  
T. Aoki ◽  
Y Shimizu ◽  
T. Kikkawa

AbstractA novel spin on material derived from perhydropolysilazane that converts into ultra-low k inorganic films is described in this paper. The obtained films, cured at 400°C in N2 atmosphere, exhibit dielectric constants as low as 1.6 which do not change after holding the wafers in a clean-room mbient for 2 months. Cross-sectional SEM images of the cured films show the aggregation of small granules with diameters ranging from 5 to 30 nm. The films can be obtained by conventional SOG process: spin-coating, baking and curing, without any additional process such as hydrophobic treatment.The average atomic compositions of the films are, Si/O/N/C = 40/55/5/0.5 (atomic %), by XPS analysis. These results indicate that the films have hydrogen silicon oxynitride structures. No evolution of H2O and NH3 was detected by TDS analysis in the temperature range of RT to 800°C. Hydrophobic Si-H and Si-H2 groups remaining in the film might prevent water absorption, resulting in the low dielectric constant.The remainder of Si-H and Si-H2 constituents in the cured films is the result of selective oxidation reactions of perhydropolysilazane in the baking process with the use of a specific catalyst. The structures of the films are tailored by altering the amount of the catalyst. In this study, we also demonstrate the relationship between the effect of the catalyst and the film properties.


1970 ◽  
Vol 23 (5) ◽  
pp. 905 ◽  
Author(s):  
PJ Pearce ◽  
W Strauss

The electrolytic conductance of solutions of potassium chloride and tetrabutyl- ammonium picrate over a range of concentrations have been measured in dioxan-water mixtures containing 0, 25, 50, 70, and 80% dioxan at 25� and pressures up to 1000 and 2500 bars respectively for the two solutes. The solvent concentration range corresponds to a range of dielectric constants of 78.3 (for water) to 11.98 (80% dioxan). The association of KCl in solutions of low dielectric constant is reduced by increasing pressure, so that the conductances of the solutions of finite concentration are not reduced as much by pressure as at infinite dilution. In contrast to this, the solutions of the tetrabutylammonium picrate are wholly dissociated even in very low dielectric constant solvents, as is shown by the limited concentration dependence of the conductance pressure characteristics.


1994 ◽  
Vol 370 ◽  
Author(s):  
R.A. Olson ◽  
G.M. Moss ◽  
B.J. Christensen ◽  
J.D. Shane ◽  
R.T. Coverdale ◽  
...  

AbstractThere has been much recent progress on the application of impedance spectroscopy (IS) to the study of microstructure and transport in cement-based materials. The IS spectrum allows for the precise determination of bulk resistance, which is a measure of the pore phase interconnectivity, and calculation of the relative dielectric constant, which is related to the capillary pore size and distribution. High values of the relative dielectric constant (σ105) observed in cement paste at early hydration times are the direct result of the microstructure inducing dielectric amplification. Solvent exchange and freezing experiments, combined with digital-image-based computer modeling, have confirmed the role of large capillary pores in the dielectric amplification in young pastes.The conductivities (σ) and relative dielectric constants (εr) of ordinary portland cement (OPC) pastes were monitored during cooling and solvent exchange with isopropanol and methanol. Dramatic decreases in σ and εr, in some cases over two orders of magnitude, occurred at the initial freezing point of the aqueous phase in the macropores and large capillary pores. The same dramatic decreases in a and er were observed at the onset of solvent exchange. Both effects provide experimental support for the dielectric amplification mechanism within the microstructure on the μm-scale. A secondary dielectric amplification was observed in the frozen and solvent exchanged pastes, which produced dielectric constants on the order of 103. This effect is attributed to amplification on the nm-scale within the layered calcium silicate hydrate (C-S-H) gel microstructure. Additional insight into the variable nature of the C-S-H microstructure was obtained by comparing the dielectric behavior of methanol-exchanged OPC pastes to isopropanolexchanged OPC pastes.


2012 ◽  
Vol 262 ◽  
pp. 448-453 ◽  
Author(s):  
Jian Yong Lv ◽  
Yan Meng ◽  
Li Fan He ◽  
Teng Qiu ◽  
Xiao Yu Li ◽  
...  

A novel fluorine containing epoxy 4-fluoro-4′,4″-diepoxypropoxy triphenyl methane (FDE) was designed and synthesized. The synthesized epoxy was cured by methyl nadic anhydride (MNA) and diglycidyl ether of bisphenol A (DGEBA) was chosen for comparison. Both glass transfer temperature (Tg) and 5% weight loss degradation temperature (Td5%) of cured FDE are over 60°C higher than that of DGEBA. Dielectric constants of the cured FDE at 106 Hz and 107 Hz are 3.09 and 2.91, comparing to 3.50 and 3.24 of the cured DGEBA, respectively. Furthermore, water absorption of the cured FDE is lower than that of DGBEA.


Sign in / Sign up

Export Citation Format

Share Document