Dielectric Properties of Sol - Gel Silica Glasses

1986 ◽  
Vol 72 ◽  
Author(s):  
G. V. Chandrashekhar ◽  
M. W. Shafer

AbstractDielectric properties have been measured for a series of porous and fully densified silica glasses, prepared by the sol-gel technique starting from Si-methoxide or Si-fume. The results for the partially densified glasses do not show any preferred orientation for porosity. When fully densified (˜2.25 gms/cc) without any prior treatment of the gels, they have dielectric constants of ≥ 6.5 and loss factors of 0.002 at 1 MHz, compared to values of 3.8 and <0.001 for commercial fused silica. There is no corresponding anomaly in the d.c. resistivity. Elemental carbon present to the extent of 400–500 ppm is likely to be the main cause for this enhanced dielectric constant. Extensive cleaning of the gels prior to densification to remove this carbon were not completely successful pointing to the difficulty in preparing high purity, low dielectric constant glasses via the organic sol-gel route at least in the bulk form.

1986 ◽  
Vol 73 ◽  
Author(s):  
G. V. Chandrashekhar ◽  
M. W. Shafer

ABSTRACTDielectric properties have been measured for a series of porous and fully densified silica glasses, prepared by the sol-gel technique starting from Si-methoxide or Si-fume. The results for the partially densified glasses do not show any preferred orientation for porosity. When fully densified (∼2.25 gms/cc) without any prior treatment of the gels, they have dielectric constants of ≥ 6.5 and loss factors of 0.002 at 1 MHz, compared to values of 3.8 and <0.001 for commercial fused silica. There is no corresponding anomaly in the d.c. resistivity. Elemental carbon present to the extent of 400–500 ppm is likely to be the main cause for this enhanced dielectric constant. Extensive cleaning of the gels prior to densification to remove this carbon were not completely successful pointing to the difficulty in preparing high purity, low dielectric constant glasses via the organic sol-gel route at least in the bulk form.


1999 ◽  
Vol 576 ◽  
Author(s):  
Robert F. Cook

ABSTRACTSpin-on glasses, generated by the condensation of an organic-inorganic hybrid silsesquioxane (SSQ), have great potential as low dielectric-constant semiconductor interconnection materials. After curing and condensation SSQ materials consist of an amorphous, inorganic, –Si–O-Sibridging network with organic, non-bridging –Si–R side groups. Relative dielectric constants in the range 2.5–3.3 are obtained for SSQ materials, depending on the curing conditions, and compare with 4.0 for conventionally-used fused silica. The non-bridging side groups significantly disrupt the SSQ network—occupying more than 25% of the Si bonds—and lead to materials that are considerably less stiff, hard and tough than fused silica. Perhaps more importantly, SSQ materials have thermal expansion coefficients greater than that of the intended Si substrate and therefore finish curing in a state of residual tension, leading to a susceptibility to stress-corrosion cracking. In this paper the development of thermomechanical properties during curing of SSQ spin-on glasses is considered and related to the driving force for film cracking deriving from the residual tension. Various crack suppression schemes involving mechanisms both intrinsic and extrinsic to the base SSQ are discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21662-21671 ◽  
Author(s):  
Weibing Dong ◽  
Yue Guan ◽  
Dejing Shang

To acquire low dielectric constant polyimide films with good mechanical and thermal properties and low CTE applied in microelectronic fields, three novel polyimides containing pyridine and –C(CF3)2– groups were firstly designed and synthesized.


2000 ◽  
Vol 617 ◽  
Author(s):  
Ian W. Boyd ◽  
Jun-Ying Zhang

AbstractIn this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature LW annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 Acm−2 and 1.95×10−7 Acm−2 at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD. respectively - several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9 Acm−2 and 6.4× 10−9 Acm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7 A/cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature, A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing.


2012 ◽  
Vol 512-515 ◽  
pp. 828-831 ◽  
Author(s):  
Wei Dong ◽  
Chang An Wang ◽  
Lei Yu ◽  
Shi Xi Ouyang

Porous Si3N4/SiO2/BN composite ceramics with high strength and low dielectric constant were prepared by dry-pressing process and pressureless sintering at 1750°C for 1.5 h in flow nitrogen. The influences of BN content on microstructure, porosity, mechanical and dielectric properties of the porous Si3N4/SiO2/BN composite ceramics were discussed. The results showed that the porous Si3N4/SiO2/BN composite ceramics with porosity ranging from 29% to 48% were fabricated by adjusting the content of BN. The flexural strength of the porous Si3N4/SiO2/BN composite ceramics was 78215 MPa. The dielectric constant of the porous Si3N4/SiO2/BN composite ceramics was 3.9~5 at 1 MHz.


1999 ◽  
Vol 594 ◽  
Author(s):  
Mengcheng Lu ◽  
C. Jeffrey Brinker

AbstractLow dielectric constant silica films are made using a surfactant templated sol-gel process (K∼2.5) or an ambient temperature and pressure aerogel process (K∼1.5). This paper will present the in-situ measurement and analysis of stress development during the making of these films, from the onset of drying till the end of heating. The drying stress is measured by a cantilever beam technique; the thermal stress is measured by monitoring the wafer curvature using a laser deflection method. During the course of drying, the surfactant templated films experience a low drying stress due to the influence of the surfactant on surface tension and extent of siloxane condensation. The aerogel films first develop a biaxial tensile stress due to solidification and initial drying. At the final stage of drying where the drying stress vanishes, dilation of the film recreates the porosity of the wet gel state, reducing the residual stress to zero. For the surfactant templated films, very small residual tensile stress remains after the heat treatment is finished (∼30MPa). Aerogel film has almost no measurable stress developed in the calcination process. In situ spectroscopic ellipsometry analysis during drying and heating, and TGA/DTA are all used to help understand the stress development.


2018 ◽  
Vol 31 (8) ◽  
pp. 986-995
Author(s):  
Lei Wang ◽  
Guifen Gong ◽  
Junyao Shen ◽  
Jinsong Leng

Polyimide (PI)/titanium dioxide (TiO2) composite nanofibers (NFs) with average diameters of 200–250 nm were synthesized via electrospinning. The total number density of dipoles decreased significantly, owing to the porous structures and compact interface between TiO2 NPs and PI matrix. All PI/TiO2 NFs maintain low dielectric constants and losses. For example, the dielectric constants of PI/TiO2-6% NFs are all lower than 2.6, being exposed to temperatures from 25°C to 200°C. Meantime, the dielectric losses of PI/TiO2-6% NFs are below 0.005. For ultraviolet (UV)-light shielding performance, the PI/TiO2 NFs exhibited good UV-light shielding and corresponding anti-photoaging properties. The reason can be ascribed from high UV-light absorption and scattering ability in the TiO2 NPs. The best UV-light absorption (average: 3.71) and corresponding absorption decay (15.13%) were achieved for optimized PI/TiO2-6% NFs. Other fundamental characteristics, such as the thermal stability, mechanical tensile property, and hydrophobicity, were also investigated. Such low dielectric constant PI/TiO2 composite NFs can be alternatively chosen under a longtime UV-light exposing condition.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000476-000482 ◽  
Author(s):  
Masao Tomikawa ◽  
Hitoshi Araki ◽  
Yohei Kiuchi ◽  
Akira Shimada

Abstract Progress of 5G telecommunication and mm radar for autopilot, high frequency operation is required. Insulator materials having low loss at high frequency is desired for the applications. We designed the low dielectric constant, and low dielectric loss materials examined molecular structure of the polyimide and found that permittivity 2.6 at 20GHz, dielectric loss 0.002. Furthermore, in consideration of mechanical properties such as the toughness and adhesion to copper from a point of practical use. Dielectric properties largely turned worse when giving photosensitivity. To overcome the poor dielectric properties, we designed the photosensitive system. After all, we successfully obtained 3.5 of dielectric constant and 0.004 of dielectric loss, and 100% of elongation at break. In addition, we offered a B stage sheet as well as varnish. These materials are applicable to re-distribution layer of FO-WLP, Interposer and other RF applications for microelectronics.


2008 ◽  
Vol 47-50 ◽  
pp. 973-976 ◽  
Author(s):  
Yi He Zhang ◽  
Qing Song Su ◽  
Li Yu ◽  
Hong Zheng ◽  
Hai Tao Huang ◽  
...  

A sol-gel process was used to prepare polyimide-silica hybrid films from the polyimide precursors and TEOS in N,N- dimethyl acetamide, then the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 80nm to 1µm, depending on the size of silica particles. The structure and dielectric constant of the hybrid and porous films were characterized by FTIR,SEM. The porous films displayed relatively low dielectric constant compared to the hybrid polyimide-silica films.


Sign in / Sign up

Export Citation Format

Share Document