The Effect of Carbon Black Type on the Dynamic Properties of Natural Rubber

1973 ◽  
Vol 46 (4) ◽  
pp. 897-926 ◽  
Author(s):  
J. D. Ulmer ◽  
V. E. Chirico ◽  
C. E. Scott

Abstract The influence of carbon black type on the dynamic properties of natural rubber is examined for nine carbon blacks, encompassing a wide range of structure and surface area. The dynamic properties are measured at 23° C and 100° C, over a 2 decade range of log frequency, and over a range of 1 to 25 per cent dynamic strain. The effect of carbon black structure and surface area on dynamic properties of a natural rubber compound are dependent on the combination of strain amplitude and frequency test conditions. The effect of carbon black surface area and structure at different temperatures varies on an absolute basis but not necessarily on a relative basis. Correlations of forced non resonant measurements of dynamic properties with dynamic measurements using other instruments confirms the strain amplitude and frequency interaction with carbon black type. Also, the Goodyear-Healy Rebound machine, the Goodrich Flexometer, and the Pirelli Hysteresimeter can be used to estimate basic dynamic properties over limited strain amplitude and frequency conditions. In addition, mixing procedure was found to have a significant effect on the dynamic properties of a natural rubber compound filled with N-327.

1964 ◽  
Vol 37 (4) ◽  
pp. 265-272
Author(s):  
S. Ando ◽  
J. Yamada ◽  
K. Hayashi ◽  
Y. Akiyama ◽  
T. Shinmyo

1968 ◽  
Vol 41 (5) ◽  
pp. 1203-1206 ◽  
Author(s):  
A. R. Payne

Abstract Some crystalline organic compounds containing a β-naphthyl group stiffen rubbers considerably. This paper discusses the dynamic behavior of these systems when subjected to oscillatory strain of increasing amplitude. Modulus strain amplitude plots similar to that in carbon black-natural rubber systems are obtained. The implication of these results to reinforcement theory is discussed.


1994 ◽  
Vol 67 (5) ◽  
pp. 845-853 ◽  
Author(s):  
A. Mallick ◽  
D. K. Tripathy ◽  
S. K. De

Abstract Increases in dynamic strain amplitude (DSA) causes changes in the dynamic mechanical properties of high abrasion furnace (HAF) carbon black filled polyacrylic acid (PAA) and epoxidised natural rubber (ENR) blends. But the changes are more prominent in comparison to conventional rubber vulcanizates. It is believed that crosslinking between PAA and ENR in the presence of carbon black results in the formation of a network-induced-agglomerate superstructure which, however, breaks down on the application of dynamic strain.


2013 ◽  
Vol 7 (4) ◽  
pp. 175-180 ◽  
Author(s):  
Liga Dabare ◽  
Ruta Svinka

Porous ceramic pellets for possible environmental application were produced from different Latvian clays by sintering at different temperatures. Their characteristics and influence of additives were analysed using X-ray diffraction, mercury porosimetry and BET tests. The obtained ceramic pellets from calcareous clays after immersion in distilled water change its pH value, which affects their capability to adsorb ions or molecules on the surface. The sorption capabilities are dependent on the pH level of water solution, composition of clays, and used adsorbate. Porosity of the produced pellets is mostly within range from 15 to 25 % throughout all sintering temperatures with a slight decrease at 1050 ?C. The specific surface area has a wide range up to 30 m2/g. The highest surface area has pellets sintered at lower temperatures. The adsorption capability of pellets was evaluated using water solutions with different ions. The most promising results were obtained with iodine sorption. For most pellets the sorption capacity was 12.7 mg/g, although for the pellets sintered at 1050 ?C it was lower.


2013 ◽  
Vol 844 ◽  
pp. 239-242 ◽  
Author(s):  
Supaporn Ieadsang ◽  
Anoma Thitithammawong ◽  
Charoen Nakason ◽  
Azizon Kaesaman

Modified epoxidized palm oil (pA-m-EPO) was prepared by a reaction of epoxidized palm oil (EPO) with n-phenyl-p-phenylenediamine. Chemical structure of the pA-m-EPO was characterized by using FT-IR spectrophotometer. Influence of the pA-m-EPO on bound rubber content, total mixing energy, Mooney viscosity and curing characteristics of carbon black filled natural rubber compound together with mechanical and morphological properties of carbon black filled natural rubber vulcanizates was later studied. Results showed that the NR compound and vulcanizate with using the pA-m-EPO gave inferior properties than those of using the aromatic oil. However, they provided better properties than those of the treated distillate aromatic extract (TDAE) excepting filler dispersion. Furthermore, the pA-m-EPO can be claimed as non-carcinogenic processing oil with low polycyclic aromatic hydrocarbons.


2020 ◽  
Vol 81 ◽  
pp. 106173 ◽  
Author(s):  
Suppachai Sattayanurak ◽  
Kannika Sahakaro ◽  
Wisut Kaewsakul ◽  
Wilma K. Dierkes ◽  
Louis A.E.M. Reuvekamp ◽  
...  

2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2018 ◽  
Vol 91 (1) ◽  
pp. 79-96 ◽  
Author(s):  
Cindy S. Barrera ◽  
Alfred B. O. Soboyejo ◽  
Katrina Cornish

ABSTRACT Practical statistical models were developed to quantify individual contributions from characteristics of conventional and non-conventional fillers and predict resulting mechanical properties of both hevea and guayule natural rubber composites. Carbon black N330 and four different agro-industrial residues, namely, eggshells, carbon fly ash, processing tomato peels, and guayule bagasse, were used in this study. Filler characteristics were used as explanatory variables in multiple linear regression analyses. Principal component analysis was used to evaluate correlations among explanatory variables based on their correlation matrices and to transform them into a new set of independent variables, which were then used to generate reliable regression models. Surface area, dispersive component of surface energy, carbon black, and waste-derived filler loading were found to have almost equal importance in the prediction of composite properties. However, models developed for ultimate elongation poorly explained variability, indicating the dependence of this property on other variables. Agro-industrial residues could potentially serve as more sustainable fillers for polymer composites than conventional fillers. This new modeling approach for polymer composites allows the performance of a wide range of different waste-derived fillers to be predicted with minimum laboratory work, facilitating the optimization of compound recipes to address specific product requirements.


Sign in / Sign up

Export Citation Format

Share Document