Better Process Description for the Extrusion of Silica and Carbon Black Compounds

2001 ◽  
Vol 74 (5) ◽  
pp. 899-914
Author(s):  
A. Limper ◽  
D. Schramm

Abstract In comparison to plastics processing, rubber processors handle a much more complex material. Due to active fillers used in rubber compounds, such as carbon black and silica, in some cases extraordinary filler/filler interactions occur. In general the multi-component system leads to a very complex rheological behavior. If silica compounds e.g. are processed the chemical modification of the filler surface (by organosilanes) has to be taken into account. By this the rheological behavior of the material changes dramatically. All these circumstances make rubber processing to a very complex theme. This paper presents results which are obtained within an European research project. The work is focussing on a better process description of the extrusion process of rubber compounds. It handles both applications of the extrusion process, i. e. for technical rubber goods or for making tire parts like the extrusion of tread stripes. Hence in this paper a new approach for modeling the flow in the extruder screw will be presented. Using this as a simulation tool a systematic analysis of the extrusion process is possible in reasonable time. Another field of interest in this context is the rheological characterization of rubber compounds with a so called „Extrusion-Rheometer“. The advantages of this device will be shown for the investigation of processability and gathering representative rheological data for recalculations of screw and die flow in the extrusion process.

2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2009 ◽  
Vol 66 ◽  
pp. 139-142 ◽  
Author(s):  
Ji Jun Qian ◽  
Ai Ping Chen ◽  
Zhong Xin Liu ◽  
Chun Zhong Li

The rheological properties of carbon black gel ink were investigated by measurement the relationship between shear stress and shear rate. The fitting to the common rheological curve of gel ink with Hersegel-Bulkley equation was introduced. And the rheological parameters used to characterize the writing properties of gel ink were proposed. The results indicated that the gel ink system possessed strong shear-thinning ability. And the writing performance of the gel ink could be characterized with rheological parameters comprehensively.


2006 ◽  
Vol 79 (4) ◽  
pp. 610-620 ◽  
Author(s):  
H. H. Le ◽  
M. Tiwari ◽  
S. Ilisch ◽  
H-J. Radusch

Abstract In the present work, the effect of carbon black (CB) type on the electrical conductance of CB filled rubber compounds measured online in the internal mixer and the corresponding CB dispersion were investigated. The CB dispersion is strongly affected by the specific surface area and structure of CB which can be directly monitored by use of the online electrical conductance method. The effect of CB mixture ratio of a high conductive CB and a non-conductive one on the online electrical conductance was investigated for CB filled rubber compounds. By addition of a small amount of a high-conductive CB type into a non-conductive CB filled rubber compound, a characteristic online conductance - time characteristic is observed that is a result of the formation of a joint network of the two CB types. It could be shown, that such a characteristic is suitable to monitor the dispersion process of the non-conductive CB in the rubber compound.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4068
Author(s):  
M. M. A. Spanjaards ◽  
G. W. M. Peters ◽  
M. A. Hulsen ◽  
P. D. Anderson

In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheological characterization. Based on some motivated choices, we will present an approach to extend this range.


2013 ◽  
Vol 6 (3) ◽  
pp. 399-413 ◽  
Author(s):  
M. R. M. M. Costa ◽  
E. Pereira ◽  
R. G. Pileggi ◽  
M. A. Cincotto

Rheology studies the deformation and flow of matter and seeks to describe the deformations of material depending on the time they are exposed to mechanical actions. This paper proposes to understand the behavior of fresh mortar adhesives in Squeeze Flow tests based on rheological characterization of different commercial compositions. In the tests, flow of material results from the application of a compressive load on the sample in the fresh state which causes displacement due to stresses generated during radial shear flow. We performed further physical characterizations of mortars and viscosity on material passing the through a sieve with a 0.075 mm sieve opening with the objective of basing the analysis of the results obtained from Squeeze Flow tests. It was observed that the mortars studied showed differences in rheological behavior, probably resulting from synergistic action of some of the composition parameters, especially the particle size distribution and particle morphology.


2021 ◽  
Vol 8 ◽  
Author(s):  
William Amoako Kyei-Manu ◽  
Lewis B. Tunnicliffe ◽  
Jan Plagge ◽  
Charles R. Herd ◽  
Keizo Akutagawa ◽  
...  

The thermo-mechanical properties of carbon black reinforced natural and styrene butadiene rubbers are investigated under rapid adiabatic conditions. Eleven carbon black grades with varying surface area and structure properties at 40 parts per hundred (phr) loading are studied and the unreinforced equivalents are included for reference. The results show a strong correlation of the modulus, mechanical hysteresis, temperature rise and calculated crystallinity of the rubbers measured in tensile extension with strain amplification factors. This highlights the influence of matrix overstraining on microstructural deformations of the rubber upon extension. The strain amplification factors are calculated via the Guth-Gold equation directly from carbon black type and loading, allowing a correlation of the fundamental morphological properties of carbon black with thermal and mechanical properties of rubbers upon extension. Analysis of the thermal measurements of the rubber compounds upon extension and retraction and contrasting between crystallizing and non-crystallizing rubbers reveals that a substantial irreversible heat generation is present upon extension of the rubber compounds. These irreversible effects most likely originate from microstructural damage mechanisms which have been proposed to account for the Mullins Effect in particle reinforced rubbers.


2007 ◽  
Vol 26 (8) ◽  
pp. 1041-1048 ◽  
Author(s):  
Herbert W. Müllner ◽  
Josef Eberhardsteiner ◽  
Wolfgang Fidi

Sign in / Sign up

Export Citation Format

Share Document