scholarly journals Potentials of the Extracts of Algerian Saharan Plant Cotula cinerea for the Management of Two Insect Pests, Aphis fabae and Tribolium castaneum

2020 ◽  
Vol 15 (2) ◽  
pp. 41-57
Author(s):  
Fatma Acheuk ◽  
◽  
Kemais Abdellaoui ◽  
Wassima Lakhdari ◽  
Nora Chahbar ◽  
...  

The insecticidal potential of the Saharan plant Cotula cinerea, was evaluated on two insect species namely Aphis fabae and Tribolium castaneum by topical application (contact toxicity) and repellency test. A crude ethanolic extract of aerial part of the plant was prepared and tested in the laboratory on adults of both species. For contact toxicity, five doses were tested on each of the two species 1.56, 3.12, 6.25, 12.5 and 25 mg/ml for A. fabae and 25, 50, 250, 350 and 500 µg/insect for T. castaneum. The repellency of the extract was studied at the dose 500 μg/insect for T. castaneum and 25 µg/ml for A. fabae. Results showed that the repellency of the extract increased with exposure time and the highest rates were observed after 4 h of exposure (72.33 ± 22% for T. castaneum and 87 ± 3.6% for A. fabae). For insecticidal activity, at the highest doses (25 mg/ml and 500 µg/ml), 100% mortality is obtained 72 h after treatment for A. fabae and after 48 h for T. castaneum. The extract of this plant was found to be more toxic against T. castaneum adults. LD50 calculated 24 h after treatment for the two species is estimated at 1.7 mg/ml for A. fabae and at 30.3 µg/insect for T. castaneum. The extract of this plant inhibited the activity of acetylcholinesterase (AChE) in both insect species. This result suggests that this plant has a neurotoxic effect on A. fabae and T. castaneum. The results of phytochemical study showed that the plant is mainly rich in flavonoids, gallic tannins, alkaloids, saponosides and glucosides. The insecticidal effect obtained in this study could be due to the synergetic action of all constituents of the extract. Results suggest the possibility of using the extracts of this plant in integrated pest management to replace the chemical insecticides.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mariame Najem ◽  
Mohamed Bammou ◽  
Lamia Bachiri ◽  
El Houssine Bouiamrine ◽  
Jamal Ibijbijen ◽  
...  

Chemical pesticides used against insect pests of stored food have adverse effects on both health and the environment. So, the present study aims to evaluate the insect repulsive and insecticidal power of Ruta chalepensis L. essential oil (EO) from the region of Oulmes (Central plateau of Morocco); the ultimate objective is to develop a biological and ecological control strategy against pests. Thus, the EO obtained by hydrodistillation from the aerial parts of Ruta chalepensis L. was identified by GC-MS; its repellent and fumigant toxicity effects on adults of Tribolium castaneum Herbst were, respectively, investigated by the preferential area method on a filter paper and the inhalation test. The insecticide power was estimated by determining the percentage of mortality as a function of the duration of exposure and concentration of the EO. The essential oil obtained is characterized by the dominance of 2-undecanone (64.35%), piperonyl piperazine (11.9%), 2-decanaone (5.12%), 2-dodecanone (4.52%), decipidone (3.9%,) and 2-tridecanone (2.36%). This EO is endowed with a very repulsive power belonging to class V, which is strongly due to its majority compound 2-undecanone. The dose 0.038 μl/ml gave a repellent power of 100% after 15 min. The tests also revealed a considerable insecticidal effect, which reached 100% after 48 hours at a dose of 0.62 μl/ml. The calculation of the lethal dose causing 50% mortality (LD50) and the lethal times after which there is 50% mortality (LT50) allowed deducing that the insecticidal effect of Ruta chalepensis L. is time- and dose-dependent. Hence, the effectiveness of Ruta chalepensis L. EO attests that it can constitute a healthy alternative to fight against Tribolium castaneum Herbst.


2013 ◽  
Vol 46 (3) ◽  
pp. 97-101 ◽  
Author(s):  
Samuel Adelani Babarinde ◽  
Grace Oluwakemi Babarinde ◽  
Adeola Foluso Odewole ◽  
Olubukola Omotoyosi Alagbe

Abstract A survey was carried out between March and August 2010 to identify insect pests of stored yam chips in Ogbomoso Metropolis, Nigeria. Dried yam chips were randomly obtained from old stocks in 6 local markets within the metropolis on monthly basis. There was a significant (P < 0.05) difference in insect abundance based on month of sampling and insect species. Dinoderus porcellus (Coleoptera: Bostrychidae) was the most abundant species. Other species encountered were Araecerus fasciculatus (Degeer) (Coleoptera: Anthribidae), Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) and Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). When chips were infested with Dinoderus porcellus and stored for 3 months, reconstituted thick paste (amala) was made from the flour and was evaluated for consumers’ acceptability. Sensory characteristics such as odour, colour, texture, appearance, taste and overall acceptability were significantly (P < 0.05) affected when compared with the paste prepared from the uninfested chips.


2018 ◽  
Vol 111 (2) ◽  
pp. 265 ◽  
Author(s):  
Billal NIA ◽  
Naama FRAH ◽  
Adel LEKBIR ◽  
Khadidja BENHMED

<p><em></em><em>Nerium oleander</em> is an evergreen flowering shrub or small tree distributed widely in the Mediterranean region. It is also a source of polyphenols and cardenolides ?? with insecticidal effect which could be a safe alternative of chemical control of insect pests. In the present work, five concentrations (0 %, 1 %, 2.5 %, 5 %, and 10 %) of ethanolic extract from <em>Nerium oleander </em>leaves<em> </em>were evaluated for its insecticidal effect against 3 to 4 days old <em>Myzus persicae </em>individuals under laboratory conditions. Obtained results showed a significant insecticidal effect with 70 % of mortality at the highest concentration (10 %). Total phenolic content of leaf ethanolic extract of this plant was 1721.36 mg gallic acid equivalent 100 g<sup>-1</sup> dry matter. The results obtained suggest that we could make bioinsecticides based on leaves ethanolic extracts from <em>N. oleander</em> which rich in polyphenols for use eventually in integrated pest management.</p>


2019 ◽  
Vol 56 (Special) ◽  
pp. 143-155
Author(s):  
SD Mohapatra ◽  
R Tripathi ◽  
Anjani Kumar ◽  
Suchismita Kar ◽  
Minati Mohapatra ◽  
...  

The insect problem is accentuated in intensive rice cropping where the insects occur throughout the year in overlapping generations. Over 800 insect species damaging rice in one way or another, although the majority of them do very little damage. In India, about a dozen of insect species are of major importance but the economic damage caused by these species varies greatly from field to field and from year to year. Insect pests cause about 10-15 per cent yield losses. Farmers lose an estimated average of 37% of their rice crop to insect pests and diseases every year. This review focuses on precision farming tools being used in rice pest and diseases management viz., forecasting model for real-time pest-advisory services, hyper-spectral remote sensing in pest damage assessment, computer-based decision support system, disruptive technologies (mobile apps).


Insects ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Md Munir Mostafiz ◽  
Errol Hassan ◽  
Rajendra Acharya ◽  
Jae-Kyoung Shim ◽  
Kyeong-Yeoll Lee

The Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), is an insect pest that commonly affects stored and postharvest agricultural products. For the control of insect pests and mites, methyl benzoate (MBe) is lethal as a fumigant and also causes contact toxicity; although it has already been established as a food-safe natural product, the fumigation toxicity of MBe has yet to be demonstrated in P. interpunctella. Herein, we evaluated MBe as a potential fumigant for controlling adults of P. interpunctella in two bioassays. Compared to the monoterpenes examined under laboratory conditions, MBe demonstrated high fumigant activity using a 1-L glass bottle at 1 μL/L air within 4 h of exposure. The median lethal concentration (LC50) of MBe was 0.1 μL/L air; the median lethal time (LT50) of MBe at 0.1, 0.3, 0.5, and 1 μL/L air was 3.8, 3.3, 2.8, and 2.0 h, respectively. Compared with commercially available monoterpene compounds used in pest control, MBe showed the highest fumigant toxicity (toxicity order as follows): MBe > citronellal > linalool > 1,8 cineole > limonene. Moreover, in a larger space assay, MBe caused 100% mortality of P. interpunctella at 0.01 μL/cm3 of air after 24 h of exposure. Therefore, MBe can be recommended for use in food security programs as an ecofriendly alternative fumigant. Specifically, it provides another management tool for curtailing the loss of stored food commodities due to P. interpunctella infestation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christos G. Athanassiou ◽  
Nickolas G. Kavallieratos ◽  
Frank H. Arthur ◽  
Christos T. Nakas

AbstractKnockdown and mortality of adults of the red flour beetle, Tribolium castaneum (Herbst) and the confused flour beetle, Tribolium confusum Jacquelin du Val, were assessed after exposure to two contact insecticides, chlorfenapyr and cyfluthrin, on a concrete surface. Individuals were rated on a scale for knockdown of exposed adults according to their mobility from 1, representing immobilized adults to 5, representing normally moving (similar to the controls). Only cyfluthrin gave immediate knockdown. Adults were rated at 1, 3 and 7 days post-exposure. After the final assessment, adults were discarded and the same procedure was repeated for 5 consecutive weeks with new adults exposed on the same treated surfaces. Despite initial knockdown, many individuals did not eventually die after exposure to cyfluthrin. In contrast, adults exposed to chlorfenapyr were not initially knocked down after exposure but most died after 7 days. These trends were similar during the entire 5-week residual testing period. The storage of the treated dishes in illuminated or non-illuminated conditions did not affect the insecticidal effect of either insecticide. The results of the present study can be further implemented towards the design of a “lethality index” that can serve as a quick indicator of knockdown and mortality rates caused after exposure to insecticides.


Author(s):  
Shanshan Gao ◽  
Haidi Sun ◽  
Jiahao Zhang ◽  
Yonglei Zhang ◽  
Peipei Sun ◽  
...  

Abstract Uridine diphosphate glucosyltransferases (UGTs), which are phase II detoxification enzymes, are found in various organisms. These enzymes play an important role in the detoxification mechanisms of plant allelopathy and in insects. Artemisia vulgaris L. (Asterales: Asteraceae: Artemisia) essential oil has strong contact toxicity to Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) larvae. However, the effect of A. vulgaris essential oil on UGTs is unclear. In this study, A. vulgaris essential oil was shown to significantly induce the expression of the TcUgt86Dg transcript. Furthermore, treatment of TcUgt86Dg-silenced individuals with A. vulgaris essential oil resulted in higher mortality than for the control individuals, indicating that TcUgt86Dg is involved in detoxification of A. vulgaris essential oil in T. castaneum. The developmental expression profile showed that the expression of TcUgt86Dg in late adults was higher than in other developmental stages. Furthermore, the expression profile in adult tissues revealed higher expression of TcUgt86Dg in the head, antenna, fat body, and accessory gland than in other tissues. These data show that TcUgt86Dg may be involved in the metabolism of exogenous toxins by T. castaneum; thus, our results have elucidated one possible mechanism of resistance to A. vulgaris essential oil and provide a theoretical basis for a control scheme for T. castaneum.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fulai Yang ◽  
Liping Wang ◽  
Lan Zhang ◽  
Yanning Zhang ◽  
Liangang Mao ◽  
...  

AbstractCamptothecin (CPT), a natural alkaloid isolated from Camptotheca acuminata Decne, is found to show potential insecticidal activities with unique action mechanisms by targeting at DNA-topoisomease I (Top1) complex and inducing cell apoptosis. To improve the efficacy against insect pests, two camptothecin (CPT) derivatives were synthesized through introducing two functional groups, 2-nitroaminoimidazoline and 1-chloro-2-isocyanatoethane by esterification reaction. The insecticidal activities of these two derivatives were evaluated at contact toxicity, cytotoxicity and topoisomerase I (Top1) inhibitory activities comparing with CPT and hydroxyl-camptothecin (HCPT). Results showed that compound a, synthesized by introducing 2-nitroaminoimidazoline to CPT, apparently increased contact toxicity to the third larvae of beet armyworm, Spodoptera exigua, and cytotoxicity to IOZCAS-Spex-II cells isolated from S. exigua. However, the inhibition on DNA relaxation activity of Top1 was reduced to less than 5 percentage even at high concentrations (50 and 100 μM). For introducing 1-chloro-2-isocyanatoethane to HCPT, the contact toxicity, cytotoxicity and Top1 inhibitory activity of synthesized compound b were increased significantly compared to CPT and HCPT. These results suggested that both synthesized compounds possessed high efficacy against S. exigua by targeting at Top1 (compound b) or novel mechanism of action (compound a).


2016 ◽  
Vol 31 (1-2) ◽  
pp. 9-18 ◽  
Author(s):  
Zlatko Korunic

Despite numerous advantages of diatomaceous earth (DE), its use for direct mixing with grains to control stored-product insects remains limited because of some very serious obstacles and disadvantages. The main obstacles preventing a wider use of DEs for mixing with grain, such as health concerns, the reduction in bulk density, differences in insect species tolerance to the same DE formulation, the effects of grain moisture and temperature on the effectiveness against insects, the influence of various commodities on DE efficacy, the use of DEs in some other fields, and possible solutions for overcoming DE limitations during direct mixing with grains are described in this manuscript. The same attempts have been made to discover new ways of increasing significantly the effectiveness against insects when much lower concentrations are used for direct mixing with grains. If these newer enhanced formulations can respond to the existing limitations of diatomaceous earth, a wider utilization of diatomaceous earth may be expected to control stored-product insect pests.


Author(s):  
Dayami Laguna Ávila ◽  
Carlos Pupo Feria ◽  
Gladia González Ramírez ◽  
Alina Espeek González

Insects pest of stored grains. Impact on food security of Las Tunas municipality, Cuba Resumen Con el objetivo de determinar las especies de insectos plaga en granos almacenados para la obtención de información que contribuyan al manejo de sus poblaciones y minimizar las pérdidas que influyen en la seguridad alimentaria de la población, se realizó un estudio en la Unidad 639 de la Empresa Mayorista de Productos Alimenticios del municipio Las Tunas, Cuba, en el período de enero del año 2011 hasta diciembre del año 2013. En el estudio se colectaron e identificaron 26 especies de insectos plaga en las naves, distribuidas en 19 géneros y 12 familias, pertenecientes a tres órdenes, de ellas, 23 especies cosmopolitas y de amplia distribución en Cuba. Las principales especies de insectos plaga encontradas fueron Tribolium castaneum; Ahasverus advena; Bruchus pisorum; Sitophilus oryzae; Ephestia sp. y Liposcelis sp. El hospedante con mayor frecuencia de aparición de las especies de insectos plaga fue el arroz, seguido por el frijol y el chícharo. Palabras clave: almacenes; cereal; plagas Abstract In order to determine the species of insect pests in stored grains to obtain information that contribute to the management of their populations and minimize losses that influence the food security of the population, a study was carried out in Unit 639 of the Company Wholesaler of Food Products of the municipality Las Tunas, Cuba, in the period from January 2011 until December 2013. The study collected and identified 26 species of insect pests in the ships, distributed in 19 genera and 12 families, belonging to three orders, of which 23 species are cosmopolitan and widely distributed in Cuba. The main species of pest insects found were Tribolium castaneum; Ahasverus advena; Bruchus pisorum; Sitophilus oryzae; Ephestia sp. and Liposcelis sp. The host with the highest frequency of appearance of insect pests was rice, followed by beans and peas. Keywords:  Insect pests; storage; food safety.


Sign in / Sign up

Export Citation Format

Share Document