scholarly journals Probiotic as Immune Modulator; A New Trend in Medication

2020 ◽  
Vol 1 (2) ◽  
pp. 29-58
Author(s):  
Zahed Mahmood ◽  
Muazzama Zahid ◽  
Muhammad Jahangeer ◽  
Areej Riasat ◽  
Naveed Munir ◽  
...  

Probiotics are live microbes that confer beneficial health effects to the host when administered in sufficient amount. The dead bacteria may express the properties of probiotic components. The most common strains of probiotics are lactobacillus and Bifidobacterium, these are also present in functional food stuffs mostly in dairy and fermented foods. The use of probiotics based on the goal of producing food microbes that are healthy for intestine and food ingestion. Basically, the purpose of probiotics is to prevent from pathogens and maintain the proper gastrointestinal functions. The probiotics ameliorate many digestive disorders included, lactose intolerance, irritable bowel syndrome and antibiotic associated diarrhea. Probiotics also treat other diseases such as cardiovascular diseases, diabetes, obesity, liver diseases, cancer and in the treatment of HIV. The patients of HIV who are on antiretroviral therapy, they, may have dysbiosis of gut microbiom. The probiotics are useful for the prevention of immunological activity of gut. Probiotics have different mechanism of action such as colonization of perturbed microbes in intestine, pathogens exclusion competitively, mucin production cell adhesion, production of short chain fatty acids and immune system modulation mainly differentiate the T regs and increase the regulation of anti-inflammatory cytokines (IL-10) and growth factors.

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 894
Author(s):  
Johannes Pitsch ◽  
Georg Sandner ◽  
Jakob Huemer ◽  
Maximilian Huemer ◽  
Stefan Huemer ◽  
...  

Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are associated with digestive disorders and with diseases such as irritable bowel syndrome. In this study, we determined the FODMAP contents of bread, bakery products, and flour and assessed the effectiveness of sourdough fermentation for FODMAP reduction. The fermentation products were analyzed to determine the DP 2–7 and DP >7 fructooligosaccharide (FOS) content of rye and wheat sourdoughs. FOSs were reduced by Acetobacter cerevisiae, Acetobacter okinawensis, Fructilactobacillus sanfranciscensis, and Leuconostoc citreum to levels below those in rye (−81%; −97%) and wheat (−90%; −76%) flours. The fermentation temperature influenced the sourdough acetic acid to lactic acid ratios (4:1 at 4 °C; 1:1 at 10 °C). The rye sourdough contained high levels of beneficial arabinose (28.92 g/kg) and mannitol (20.82 g/kg). Our study contributes in-depth knowledge of low-temperature sourdough fermentation in terms of effective FODMAP reduction and concurrent production of desirable fermentation byproducts.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Roberto CATANZARO ◽  
Morena SCIUTO ◽  
Birbal SINGH ◽  
Surajit PATHAK ◽  
Francesco MAROTTA

2021 ◽  
Vol 53 ◽  
pp. S171
Author(s):  
A. Corea ◽  
T. Larussa ◽  
A.C. Procopio ◽  
C. Iannelli ◽  
A. Basile ◽  
...  

2021 ◽  
Vol 10 (4) ◽  
pp. e28110414185
Author(s):  
Kauê Felipe Lami ◽  
Victor Fernandes de Oliveira ◽  
Keila Zaniboni Siqueira Batista

The present study aimed to explore the influence of the gut-brain axis on neuroendocrine and immunological modulation in neurological and psychiatric disorders. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyzes (PRISMA) guidelines, and searches were conducted in the electronic databases PubMed and SciELO using combinations of descriptors “Gastrointestinal Microbiome”, “Neurosecretory Systems”, “Immune Response”, “Nervous System Diseases” e “Mental Disorders”. From the 144 studies generated by crossing the descriptors, 32 of them were excluded because they were duplicated in the databases, 13 because they were not related to the objectives of the review, and another 29 because they were not on eligibility criteria. Therefore, 70 studies were included in the present review. Communication between the GI tract and the CNS occurs via the neuronal, endocrine, and immunological pathways through a) the production of neurotransmitters, b) the tryptophan metabolism, c) the modulation of the immunological activity in the CNS and the SNE, d) production of short chain fatty acids, e) the production of intestinal hormones, and f) the production of branched chain amino acids.


2018 ◽  
Vol 25 (32) ◽  
pp. 3930-3952 ◽  
Author(s):  
Roberto Russo ◽  
Claudia Cristiano ◽  
Carmen Avagliano ◽  
Carmen De Caro ◽  
Giovanna La Rana ◽  
...  

The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis. This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitaryadrenal (HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disorders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alzheimer’s Disease etc. Based on this background, and considering the relevance of alteration of the symbiotic state between host and microbiota, this review focuses on the role and the involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoilethanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a large group of bioactive lipids able to modulate peripheral and central pathologic processes. Their effective role has been studied in inflammation, acute and chronic pain, obesity and central nervous system diseases. A possible correlation has been shown between these lipids and gut microbiota through different mechanisms. Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in the rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing inflammation and pain in irritable bowel syndrome and IBD animal models. In this review, we underline the relationship among inflammation, pain, microbiota and the different lipids, focusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in the central nervous system diseases.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1613 ◽  
Author(s):  
Ronald Hills ◽  
Benjamin Pontefract ◽  
Hillary Mishcon ◽  
Cody Black ◽  
Steven Sutton ◽  
...  

The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.


The Lancet ◽  
1975 ◽  
Vol 306 (7929) ◽  
pp. 319-320 ◽  
Author(s):  
H.F. Ahmed

Sign in / Sign up

Export Citation Format

Share Document