Cloning of Acetoacetyl-CoA reductase and Polyhydroxybutyrate synthase genes from the local isolate Bacillus aryabhattai 6N-NRC into Escherichia coli

Author(s):  
Neveen M. El-Metwally ◽  
Abd El-Nasser A. Khattab ◽  
Mona S. Shafei ◽  
Reda F. Allam ◽  
Yasser M. Ragab ◽  
...  

Polyhydroxybutyrate (PHB) is the most known degradable biopolymer, produced by some genera of bacteria under unfavorable growth conditions. Isolation and cloning of acetoacetyl-CoA reductase (phbB) and polyhydroxybutyrate synthase (phbC) genes from local isolate previously identified as Bacillus aryabhattai 6N-NRC (GenBank accession no. MH997667.1) was achieved. Suitable primers designed for the phbB and phbC PCR approach were used to clone the phbB and phbC genes. The phbB and phbC genes were successfully isolated, cloned and the PCR amplicon 744 bp and 1089 bp corresponding to phbB and phbC genes were identified, cloned with the pET-29a (+) carrying the phbB and phbC genes, transformed and expressed in Escherichia coli BL21. The amplification of the phbB and phbC genes using specific primers of pET-29a (+) plasmid was performed. The open reading frame of phbB sequence was found to be 99.06% identical to the sequence of acetoacetyl-CoA reductase of B. aryabhattai (GenBank accession no. CP024035.1), while the open reading frame of phbC sequence was found to be 87.18% identical to the sequence of polyhydroxybutyrate synthase of B. aryabhattai (Gen Bank accession no. CP024035.1) after DNA sequencing. The analysis of the recombinant proteins from E. coli BL21 recombinant colony by tricine-polyacrylamide gel electrophoresis clarified that the expressed phbB and phbC genes in E. coli BL21 strain showed distinct bands of intensity 26.3 KD and 37.5 KD, respectively.

2004 ◽  
Vol 70 (3) ◽  
pp. 1570-1575 ◽  
Author(s):  
Dae Heoun Baek ◽  
Jae Jun Song ◽  
Seok-Joon Kwon ◽  
Chung Park ◽  
Chang-Min Jung ◽  
...  

ABSTRACT A new thermostable dipeptidase gene was cloned from the thermophile Brevibacillus borstelensis BCS-1 by genetic complementation of the d-Glu auxotroph Escherichia coli WM335 on a plate containing d-Ala-d-Glu. Nucleotide sequence analysis revealed that the gene included an open reading frame coding for a 307-amino-acid sequence with an M r of 35,000. The deduced amino acid sequence of the dipeptidase exhibited 52% similarity with the dipeptidase from Listeria monocytogenes. The enzyme was purified to homogeneity from recombinant E. coli WM335 harboring the dipeptidase gene from B. borstelensis BCS-1. Investigation of the enantioselectivity (E) to the P1 and P1′ site of Ala-Ala revealed that the ratio of the specificity constant (k cat /Km ) for l-enantioselectivity to the P1 site of Ala-Ala was 23.4 � 2.2 [E = (k cat /Km ) l,d /(k cat /Km ) d,d ], while the d-enantioselectivity to the P1′ site of Ala-Ala was 16.4 � 0.5 [E = (k cat /Km ) l,d /(k cat /Km ) l,l ] at 55�C. The enzyme was stable up to 55�C, and the optimal pH and temperature were 8.5 and 65�C, respectively. The enzyme was able to hydrolyze l-Asp-d-Ala, l-Asp-d-AlaOMe, Z-d-Ala-d-AlaOBzl, and Z-l-Asp-d-AlaOBzl, yet it could not hydrolyze d-Ala-l-Asp, d-Ala-l-Ala, d-AlaNH2, and l-AlaNH2. The enzyme also exhibited β-lactamase activity similar to that of a human renal dipeptidase. The dipeptidase successfully synthesized the precursor of the dipeptide sweetener Z-l-Asp-d-AlaOBzl.


1999 ◽  
Vol 181 (15) ◽  
pp. 4499-4504 ◽  
Author(s):  
Frederick M. Hahn ◽  
Anthony P. Hurlburt ◽  
C. Dale Poulter

ABSTRACT Isopentenyl diphosphate isomerase catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In eukaryotes, archaebacteria, and some bacteria, IPP is synthesized from acetyl coenzyme A by the mevalonate pathway. The subsequent isomerization of IPP to DMAPP activates the five-carbon isoprene unit for subsequent prenyl transfer reactions. In Escherichia coli, the isoprene unit is synthesized from pyruvate and glyceraldehyde-3-phosphate by the recently discovered nonmevalonate pathway. An open reading frame (ORF696) encoding a putative IPP isomerase was identified in the E. coli chromosome at 65.3 min. ORF696 was cloned into an expression vector; the 20.5 kDa recombinant protein was purified in three steps, and its identity as an IPP isomerase was established biochemically. The gene for IPP isomerase, idi, is not clustered with other known genes for enzymes in the isoprenoid pathway. E. coli FH12 was constructed by disruption of the chromosomal idi gene with the aminoglycoside 3′-phosphotransferase gene and complemented by the wild-type idi gene on plasmid pFMH33 with a temperature-sensitive origin of replication. FH12/pFMH33 was able to grow at the restrictive temperature of 44°C and FH12 lacking the plasmid grew on minimal medium, thereby establishing thatidi is a nonessential gene. Although theV max of the bacterial protein was 20-fold lower than that of its yeast counterpart, the catalytic efficiencies of the two enzymes were similar through a counterbalance inKm s. The E. coli protein requires Mg2+ or Mn2+ for activity. The enzyme contains conserved cysteine and glutamate active-site residues found in other IPP isomerases.


1999 ◽  
Vol 181 (23) ◽  
pp. 7256-7265 ◽  
Author(s):  
Birgitta Esberg ◽  
Hon-Chiu Eastwood Leung ◽  
Ho-Ching Tiffany Tsui ◽  
Glenn R. Björk ◽  
Malcolm E. Winkler

ABSTRACT The tRNA of the miaB2508::Tn10dCm mutant of Salmonella typhimurium is deficient in the methylthio group of the modified nucleosideN 6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A37). By sequencing, we found that the Tn10dCm of this strain had been inserted into thef474 (yleA) open reading frame, which is located close to the nag locus in both S. typhimurium and Escherichia coli. By complementation of the miaB2508::Tn10dCm mutation with a minimal subcloned f474 fragment, we showed thatf474 could be identified as the miaB gene, which is transcribed in the counterclockwise direction on the bacterial chromosome. Transcriptional studies revealed two promoters upstream ofmiaB in E. coli and S. typhimurium. A Rho-independent terminator was identified downstream of themiaB gene, at which the majority (96%) of themiaB transcripts terminate in E. coli, showing that the miaB gene is part of a monocistronic operon. A highly conserved motif with three cysteine residues was present in MiaB. This motif resembles iron-binding sites in other proteins. Only a weak similarity to an AdoMet-binding site was found, favoring the idea that the MiaB protein is involved in the thiolation step and not in the methylating reaction of ms2i(o)6A37 formation.


2012 ◽  
Vol 58 (1) ◽  
pp. 112-115 ◽  
Author(s):  
Zhenwen Zhou ◽  
Ruili Guan ◽  
Yiyu Yang ◽  
Ling Chen ◽  
Jie Fu ◽  
...  

New Delhi metallo-β-lactamase-1 (NDM-1) is a novel type of metallo-β-lactamase (MBL) responsible for bacterial resistance to β-lactam antibiotics. Acinetobacter junii was previously shown to possess a MBL phenotype; however, the genes responsible for this phenotype were not identified. In this study, we reported the identification of NDM-1 gene in a clinical isolate of A. junii from a child patient in China, which was resistant to all β-lactams except aztreonam but sensitive to aminoglycosides and quinolones. The cloned NDM-1 gene contained an open reading frame of 813 bp and had a nucleotide sequence 99.9% identical (812/813) to reported NDM-1 genes carried by Acinetobacter baumannii , Enterococcus faecium , Escherichia coli , and Klebsiella pneumoniae . Recombinant NDM-1 protein was successfully expressed in E. coli BL21, and antibiotic sensitivities of the NDM-1-producing E. coli were largely similar to the A. junii 1454 isolate. The findings of this study raise attention to the emergence and spread of NDM-1-carrying bacteria in China.


1990 ◽  
Vol 68 (1) ◽  
pp. 123-137 ◽  
Author(s):  
Krishna G. Peri ◽  
Hughes Goldie ◽  
E. Bruce Waygood

Three enzymes are required for N-acetylglucosamine (NAG) utilization in Escherichia coli: enzyme IInag (gene nagE), N-acetylglucosamine-6-phosphate deacetylase (gene nagA), and glucosamine-6-phosphate isomerase (gene nagB). The three genes are located near 16 min on the E. coli chromosome. A strain of E. coli, KPN9, incapable of utilizing N-acetylglucosamine, was used to screen a genomic library of E. coli for a complementing recombinant colicin E1 plasmid that allowed for growth on N-acetylglucosamine. Plasmid pLC5-21 was found to contain all three known nag genes on a 5.7-kilobase (5.7-kb) fragment of DNA. The products of these nag genes were identified by complementation of E. coli strains with mutations in nagA, nagB, and nagE. The gene products from the 5.7-kb fragment were identified by [35S]methionine-labelled maxicells and autoradiography of sodium dodecyl sulphate – polyacrylamide electrophoresis gels. The gene products had the following relative masses (Mrs: nagE, 62 000; nagA, 45 000; nagB, 29 000. In addition, another product of Mr 44 000 was detected. The genes have been sequenced to reveal an additional open reading frame (nagC), a putative catabolite activator protein binding site that may control nagB and nagE, putative rho-independent terminator sites for nagB and nagE, and sequence homologies for RNA polymerase binding sites preceding each of the open reading frames, except for nagA. The calculated molecular weights (MWs) of the gene products derived from the sequence are as follows: nagA, 40 954; nagB, 29 657; nagC, 44 664; nagE, 68 356. No role is known for nagC, although a number of regulatory roles appear to be plausible. No obvious transcriptional termination site distal to nagC was found and another open reading frame begins after nagC. This gene, nagD, was isolated separately from pLC5-21, and the sequence revealed a protein with a calculated MW of 27 181. The nagD gene is followed by repetitive extragenic palindromic sequences. The nag genes appear to be organized in an operon: [Formula: see text]Key words: N-acetylglucosamine, N-acetylglucosamine-6-P deacetylase, glucosamine-6-P isomerase, repetitive extragenic palindromic sequences, catabolite repression.


2005 ◽  
Vol 187 (6) ◽  
pp. 2030-2037 ◽  
Author(s):  
Tomokuni Abe ◽  
Eiji Masai ◽  
Keisuke Miyauchi ◽  
Yoshihiro Katayama ◽  
Masao Fukuda

ABSTRACT Vanillate and syringate are converted into protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by O-demethylases in Sphingomonas paucimobilis SYK-6. PCA is further degraded via the PCA 4,5-cleavage pathway, while 3MGA is degraded through multiple pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and an unidentified 3MGA O-demethylase and gallate dioxygenase are participants. For this study, we isolated a 4.7-kb SmaI fragment that conferred on Escherichia coli the activity required for the conversion of vanillate to PCA. The nucleotide sequence of this fragment revealed an open reading frame of 1,413 bp (ligM), the deduced amino acid sequence of which showed 49% identity with that of the tetrahydrofolate (H4folate)-dependent syringate O-demethylase gene (desA). The metF and ligH genes, which are thought to be involved in H4folate-mediated C1 metabolism, were located just downstream of ligM. The crude LigM enzyme expressed in E. coli converted vanillate and 3MGA to PCA and gallate, respectively, with similar specific activities, and only in the presence of H4folate; however, syringate was not a substrate for LigM. The disruption of ligM led to significant growth retardation on both vanillate and syringate, indicating that ligM is involved in the catabolism of these substrates. The ability of the ligM mutant to transform vanillate was markedly decreased, and this mutant completely lost the 3MGA O-demethylase activity. A ligM desA double mutant completely lost the ability to transform vanillate, thus indicating that desA also contributes to vanillate degradation. All of these results indicate that ligM encodes vanillate/3MGA O-demethylase and plays an important role in the O demethylation of vanillate and 3MGA, respectively.


2000 ◽  
Vol 182 (24) ◽  
pp. 7021-7028 ◽  
Author(s):  
Geun Joong Kim ◽  
Dong Eun Lee ◽  
Hak-Sung Kim

ABSTRACT A superfamily of cyclic amidohydrolases, including dihydropyrimidinase, allantoinase, hydantoinase, and dihydroorotase, all of which are involved in the metabolism of purine and pyrimidine rings, was recently proposed based on the rigidly conserved structural domains in identical positions of the related enzymes. With these conserved domains, two putative cyclic amidohydrolase genes fromEscherichia coli, flanked by related genes, were identified and characterized. From the genome sequence of E. coli, theallB gene and a putative open reading frame, tentatively designated as a hyuA (for hydantoin-utilizing enzyme) gene, were predicted to express hydrolases. In contrast to allB, high-level expression of hyuA in E. coli of a single protein was unsuccessful even under various induction conditions. We expressed HyuA as a maltose binding protein fusion protein and AllB in its native form and then purified each of them by conventional procedures. allB was found to encode a tetrameric allantoinase (453 amino acids) which specifically hydrolyzes the purine metabolite allantoin to allantoic acid. Another open reading frame, hyuA, located near 64.4 min on the physical map and known as a UUG start, coded for d-stereospecific phenylhydantoinase (465 amino acids) which is a homotetramer. As a novel enzyme belonging to a cyclic amidohydrolase superfamily, E. coli phenylhydantoinase exhibited a distinct activity toward the hydantoin derivative with an aromatic side chain at the 5′ position but did not readily hydrolyze the simple cyclic ureides. The deduced amino acid sequence of the novel phenylhydantoinase shared a significant homology (>45%) with those of allantoinase and dihydropyrimidinase, but its functional role still remains to be elucidated. Despite the unclear physiological function of HyuA, its presence, along with the allantoin-utilizing AllB, strongly suggested that the cyclic ureides might be utilized as nutrient sources in E. coli.


1998 ◽  
Vol 180 (16) ◽  
pp. 4102-4110 ◽  
Author(s):  
Yong-Dong Wang ◽  
Sheng Zhao ◽  
Charles W. Hill

ABSTRACT The Rhs elements are complex genetic composites widely spread among Escherichia coli isolates. One of their components, a 3.7-kb, GC-rich core, maintains a single open reading frame that extends the full length of the core and then 400 to 600 bp beyond into an AT-rich region. Whereas Rhs cores are homologous, core extensions from different elements are dissimilar. Two new Rhs elements from strains of the ECOR reference collection have been characterized. RhsG (from strain ECOR-11) maps to min 5.3, and RhsH (from strain ECOR-45) maps to min 32.8, where it lies in tandem with RhsE. Comparison of strain K-12 to ECOR-11 indicates that RhsGwas once present in but has been largely deleted from an ancestor of K-12. Phylogenetic analysis shows that the cores from eight known elements fall into three subfamilies, RhsA-B-C-F,RhsD-E, and RhsG-H. Cores from different subfamilies diverge 22 to 29%. Analysis of substitutions that distinguish between subfamilies shows that the origin of the ancestral core as well as the process of subfamily separation occurred in a GC-rich background. Furthermore, each subfamily independently passed from the GC-rich background to a less GC-rich background such asE. coli. A new example of core-extension shuffling provides the first example of exchange between cores of different subfamilies. A novel component of RhsE and RhsG,vgr, encodes a large protein distinguished by 18 to 19 repetitions of a Val-Gly dipeptide occurring with a eight-residue periodicity.


Genetics ◽  
1995 ◽  
Vol 141 (1) ◽  
pp. 15-24
Author(s):  
C W Hill ◽  
G Feulner ◽  
M S Brody ◽  
S Zhao ◽  
A B Sadosky ◽  
...  

Abstract The Rhs family of composite genetic elements was assessed for variation among independent Escherichia coli strains of the ECOR reference collection. The location and content of the RhsA-B-C-F subfamily correlates highly with the clonal structure of the ECOR collection. This correlation exists at several levels: the presence of Rhs core homology in the strain, the location of the Rhs elements present, and the identity of the Rhs core-extensions associated with each element. A provocative finding was that an identical 1518-bp segment, covering core-extension-b1 and its associated downstream open reading frame, is present in two distinct clonal groups, but in association with different Rhs elements. The sequence identity of this segment when contrasted with the divergence of other chromosomal segments suggests that shuffling of Rhs core extensions has been a relatively recent variation. Nevertheless the copies of core-extension-b1 were placed within the respective Rhs elements before the emergence of the clonal groups. In the course of this analysis, two new Rhs elements absent from E. coli K-12 were discovered: RhsF, a fourth member of the RhsA-B-C-F subfamily, and RhsG, the prototype of a third Rhs subfamily.


Author(s):  
Nurhajirah Mohamed Biran ◽  
Mohd Zulkhairi Mohd Yusoff ◽  
Toshinari Maeda ◽  
Mohd Rafein Zakaria ◽  
Lian-Ngit Yee ◽  
...  

Polyhydroxyalkanoate (PHA) is a linear polyester produced through the fermentation of sugar or lipid. Biosynthesis of PHA comprises three enzymes known as acetyl-CoA acetyltransferase (phaA), acetoacetyl-CoA reductase (phaB) and PHA synthase (phaC). Comamonas sp. is one of the strains commonly used for PHA production. In order to develop higher PHA production from bacterial respond strategy, PHA biosynthesis operon of Comamonas sp. EB172 was introduced into Escherichia coli BW25113 through a pGEM-T vector. E. coli was chosen due to the complete genome information available and the absence of depolymerisation gene, phaZ. In this study, the deletion of several single genes, which are frdC, gltA, and pta, was found to be associated with PHA metabolism activity in E. coli BW25113. P1 transduction was performed to construct multiple genes knockout. The engineered strain, E. coli BW25113 frdCgltApta::kan/pGEM’-phaCABCo, yielded the highest PHA production at 64 wt.% with 1.4 fold higher than that of control strain of E. coli BW25113/pGEM’-phaCABCo. This strain is potential for industrial application for higher PHA production from E. coli.


Sign in / Sign up

Export Citation Format

Share Document