Formulation and Evaluation of Transdermal Patches of Benidipine Hydrochloride

Author(s):  
Kalpak Gajbhiye ◽  
Nawaz Hakam ◽  
Gauri Rathod ◽  
Mukund Tawar

The present research was designed to evaluate matrix type Benidipine Hydrochloride transdermal patches. So, the present work is an attempt to study effect of variation in Methocel E15LV concentration and study effect of hydrophilic and hydrophobic Methocel E15LV and Eudragit RL100 combination on release profile of Benidipine Hydrochloride. All prepared formulations were evaluated for physical and mechanical properties like thickness, moisture uptake, percent flatness, tensile strength, and percent elongation. An attempt was made to get a patch with suitable drug release property as well as physical and mechanical properties. A formulation containing Methocel E15LV 2% has shown good physical, mechanical and in-vitro drug release properties. It also showed good diffusion of Benidipine Hydrochloride across goat skin.

INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (07) ◽  
pp. 52-57

The aim of this research was to develop mucoadhesive buccal patches of nicergoline by using Factorial Design of Experiment, in order to provide a sustained release of drug into the systemic circulation. A 33 factorial experimental design was employed for optimization and to study the effect of formulation variables on responses R1 (% swelling index), R2 (% drug content), R3 (mucoadhesion time) and R4 (mucoadhesion strength). In vitro drug release study was performed on the optimized formulations. All the prepared formulations had good mechanical strength, mucoadhesion strength, neutral surface pH and drug content up to 98.17%. In vitro drug release study revealed that F-5 formulation showed promising sustained drug release profile (98.21%) for over 8 h and could be a potential substitute for marketed conventional formulations. The developed formulation (F5) was found to be optimized with considerably good stability and extended drug release profile.


2013 ◽  
Vol 71 (3) ◽  
pp. 673-683 ◽  
Author(s):  
Yu Zhou ◽  
Xin Xie ◽  
Jun Jie Zeng ◽  
Jun Ge ◽  
Hong Xiang Chen

Author(s):  
Ayushi Chourasia ◽  
Shikha Agrawal

Objective: The present work focus in the direction of “Development and evaluation of Ciprofloxacin Hydrochloride loaded ocular insert by using “plantago ovata” as natural polymer”. The current work was carried out to evaluate the control release profile of ocular insert. Natural polymer in ocular insert was used for studying the long acting property. Natural polymer is also used to enhance the bioavailability of drug and reduce toxicity. It is also used to increase the duration of action of drug for prolongs action and gives better in vitro performance as compare than to the conventional ocular formulation.Methods: Solvent casting method was used in the formulation of Ciprofloxacin Hydrochloride loaded ocular inserts. Different ocular insert formulations of varying polymer concentration were prepared. Ocular insert formulation H-1 to H-3 was prepared by using different concentration of HPMC and formulation P-1 to P-4 was prepared by using different concentration of Plantago Ovata.Results: The ocular inserts formulation was within the acceptable limits. All the pre formulation parameters of polymers such as derived properties, compressibility index, Hausner’s ratio, viscosity, melting point, swelling ratio, loss on drying, PH of mucilage solution and pre formulation of active pharmaceutical ingredient such as estimation of drug by using UV spectroscopy, determination of melting point, solubility, partition coefficient and FTIR for compatibility study of drug and excipient were evaluation. FTIR analysis also confirmed no drug-excipient interaction.Conclusion: Prepared inserts in the present study were semitransparent. The mixing of the drug in to the polymer is uniform, due to this; the drug content of all formulation is good. Formulation P4 was selected because it showed better release profile, drug content and other physicochemical properties than other formulated batch when compare. All the prepared inserts showed in vitro drug release for the period of 4 h as compare to the marketed formulation. An in vitro drug release study revealed that ocular formulation gives a prolong action. The formulation was found to be long acting.


2021 ◽  
Vol 11 (5-S) ◽  
pp. 100-107
Author(s):  
M. Pradeep Kumar ◽  
Goparaju Suryanarayana Murthy ◽  
Annamdasu Lakshmi Poojitha ◽  
P. Sindhuri ◽  
A Sreekanth ◽  
...  

The study on the effect of polymer concentration on in vitro drug release profile revealed that there is a change in vitro drug release parameters (t50, t80, and MDT) with a change in polymer concentration. Fraction of HPMC K4M, HPMC K 100 M, and Ethyl Cellulose were required to be 15, 10, and 7 mg respectively for designing optimized batch F7. The release rate of Colchicine decreased proportionally with an increase in the concentration of ethyl Cellulose and HPMC K100 M. Also the high amount of HPMC K4M leads to the less initial release and sustain effect. A theoretical drug release profile was generated using pharmacokinetic parameters of Colchicine. The value of t50 and t80 of theoretical drug release profile was found to be 242 min and 529 min respectively. The similarity factor f2 was applied between the in vitro drug release profile of optimizing batches and theoretical profile, which indicate a decent similarity between all in vitro drug release profiles (f2 = 68.28 for F7). All the batches except F1shows the value of f2 value within a range. Batch F7 showed the highest f2 (f2 = 68.28) among all the batches and this similarity was also reflected in t50 (≈ 256 min) and t80 (≈ 554 min) values. A 23 full factorial design was applied to systemically optimize in vitro drug release profile. The HPMC K4M (X1), Concentration of HPMC K100 M (X2), and concentration of EC (X3) were selected as independent variables. The time required for 50% drug released (t50), the time required for 80% drug release (t80), similarity factor f2, and mean dissolution time (MDT) were selected as dependent variables. The results of full factorial design indicate that the HPMC K4M (X1), Concentration of HPMC K100 M (X2), and concentration of EC (X3) have a significant effect on in vitro drug release profile. To find out the release mechanism the in vitro release data were fitted in the Korsmeyer-Peppas equation. All Batches except F1 and F3 show Anomalous diffusion-controlled release (combined mechanism of diffusion and case II transport).  


Author(s):  
S. DUBEY ◽  
S. P. VYAS

Objective: The objective of the present study was to formulate and characterize paclitaxel (Ptx) loaded sterically stabilized emulsomes to provide non-toxic and biocompatible carriers with high Ptx loading efficiency. Methods: Plain (P-Es) and sterically stabilized emulsomes (SS-Es) were prepared by a modified solvent evaporation method using tristearin as solid lipid and optimized for lipid to (DSPC+CHOL+DSPE-PEG)/ tristearin ratio, lipid/lipid-PEG (DSPC+CHOL/DSPE-PEG) molar ratio, solid lipid concentration, phospholipid concentration, organic to aqueous phase volume and homogenization time based on their effect particle size and entrapment efficiency. Optimized emulsomes were characterized for morphological features, in vitro drug release kinetics and protection from plasma protein. Results: The emulsomes so formed were uniform in size with a mean particle diameter of 275±5.52 and 195±6.4 nm for P-Es and SS-Es respectively. All the formulations showed pH dependent drug release with a slow and sustained release profile. Slower drug release was observed from sterically stabilized emulsomes than the plain emulsomes. The drug release profile followed the Higuchi model with the Fickian diffusion pattern. The Pegylation of emulsomes significantly reduced the in vitro protein absorption. Conclusion: The sterically stabilized emulsome can serve as a novel non-toxic platform with longer circulatory time for the delivery of Paclitaxel and other poorly water-soluble drugs as well.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2128 ◽  
Author(s):  
Mostafa Mabrouk ◽  
Pradeep Kumar ◽  
Yahya E. Choonara ◽  
Lisa C. du Toit ◽  
Viness Pillay

The present work aims to electrospin a triple layered wound patch for potential treatment of diabetic foot ulcers (DFU). The patch consisted of poly(acrylic acid) (PAA) as the skin contacting layer, polyvinyl pyrrolidone (PVP) as the middle layer, and polycaprolactone (PCL) as the outermost layer, wherein the PVP layer was loaded in situ with an antibiotic (ciprofloxacin, CFX). Morphology and mechanical properties were investigated using SEM and texture analysis. Patch quality was studied with regards to wettability, adherence, water resistance, and moisture uptake of individual layers. SEM results confirmed the fibrous and membranous nature of layers with a nano-to-micro size range. Mechanical properties of the composite patch demonstrated a tensile strength of 12.8 ± 0.5 MPa, deformation energy of 54.35 ± 0.1 J/m3, and resilience of 17.8 ± 0.7%, which were superior compared to individual layers. Patch quality tests revealed that the PCL layer showed very low wettability, adherence, and moisture uptake compared to the PVP and PAA layers. In vitro drug release data revealed an increase in cumulative drug release with higher drug loading. The results above confirm the potential of a triple layered, tripolymeric, wound patch for DFU intervention.


2014 ◽  
Vol 16 (4) ◽  
pp. 860-871 ◽  
Author(s):  
Shuo Yang ◽  
Xianzhen Yin ◽  
Caifen Wang ◽  
Haiyan Li ◽  
You He ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tulsi Sagar Sheth ◽  
Falguni Acharya

AbstractThe objective of this article is to optimize the similarity factor within immediate release (IR) and modified release (MR) of in vitro drug release profiles. The least square method is used to minimize the difference between empirical and regression curve fitting data of in vitro IR/MR drug release profiles. An estimation of percentage drug release at intermediate timepoints has been done to improve the similarity factor $f_{2}$ f 2 using linear curve fit method. In this study linear regression model is used to analyze the similarity factor $f_{2}$ f 2 for Nitrofurantoin MR Capsules, Venlafaxine HCl MR Tablets and Lurasidone IR Tablets in order to exhibit the significance as well as similarity owing to the consideration of extra intervening timepoints. This linear regression model may help pharmaceutical industries to examine the inside comparison of IR/MR in vitro drug release profile with few modifications in timepoint selection to improve similarity factor $f_{2}$ f 2 .


2018 ◽  
Vol 5 (1) ◽  
pp. 99-108
Author(s):  
L.H. Ching ◽  
S. Mahmood ◽  
R. Edros ◽  
R.V. Kutty

Theranostic micelles and polymeric nanocarrier-based drug delivery system are well known techniques that involve a diagnostic agent in polymeric micelles for a combination of therapy by using a co-delivery approach which can help in detection of a cancer cell in an early stage, increase killing effect and suppress multi-drug resistance (MDS) for better therapeutic effectiveness. The aim of this study is to develop a dual modality micellar system using D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) as a nanocarrier for co-delivery of docetaxel as a model chemotherapeutic drug and coumarin-6 as a model fluorescence imaging agent for simultaneous cancer imaging and therapy in an early stage. The theranostic micelles were prepared by a solvent casting method and characterized by their particle size, drug loading, drug encapsulation efficiency (EE) and in-vitro drug release profile. These dual modality micellar system TPDC6 micelles were successfully developed with average particle size of 79.59±0.57 nm in diameter and drug loading up to 15.46±1.02 % (EE of 78.99±1.26%) and 9.83±0.76 % (EE of 36.20±0.89%) for docetaxel and coumarin-6 respectively. Besides, the in-vitro drug release profile of the micelles revealed a desired sustained and controlled drug release manner for both docetaxel (21.62±0.36%) and coumarin-6 (10.70±0.46%). In conclusion, the micelles size obtained is in the favourable range for passive targeting through enhanced permeability and retention (EPR) effect and the drug loading and encapsulation efficiency attained are adequate for therapy and diagnosis purposes on cancer cells. This dual modality system is taking great advantages for tumour imaging and inhibition of tumour growth which is very important for early cancer detection.


Sign in / Sign up

Export Citation Format

Share Document