scholarly journals Why do we need 6G?

2021 ◽  
Vol 2 (6) ◽  
pp. 1-31
Author(s):  
Riccardo Bassoli ◽  
Frank H.P. Fitzek ◽  
Emilio Calvanese Strinati

The study and design of 5G seems to have reached its end and 5G communication systems are currently under deployment. In parallel, 5G standardization is as Release 16, which is going to complete the definition and the design guidelines of the 5G radio access network. Because of that, the interest of the scientific and industrial communities has already started focusing on the future 6G communication networks. The preliminary definition of future technology trends towards 2030, given by major standardization bodies, and the flagship 6G projects worldwide have started proposing various visions about what 6G will be. Side by side, various scientific articles, addressing the initial characterisation of 6G, have also been published. However, considering the promises of 5G, can 6G represent a significant technological advancement to justify a so-called new generation? In fact, now, 5G softwarized networks may just imply continuous network software upgrades (as it happens for the Internet) instead of new generations every ten years. This article starts describing the main characteristics that made 5G a breakthrough in telecommunications, also briefly introducing the network virtualisation and computing paradigms that have reformed telecommunications. Next, by providing rigorous definition of the terminology and a survey of the principal 6G visions proposed, the paper tries to establish important motivations and characteristics that can really justify the need for and the novelty of future 6G communication networks.

2020 ◽  
Vol 12 (6) ◽  
pp. 2497 ◽  
Author(s):  
Mashael Khayyat ◽  
Abdullah Alshahrani ◽  
Soltan Alharbi ◽  
Ibrahim Elgendy ◽  
Alexander Paramonov ◽  
...  

With the recent advances and development of autonomous control systems of cars, the design and development of reliable infrastructure and communication networks become a necessity. The recent release of the fifth-generation cellular system (5G) promises to provide a step towards reliability or a panacea. However, designing autonomous vehicle networks has more requirements due to the high mobility and traffic density of such networks and the latency and reliability requirements of applications run over such networks. To this end, we proposed a multilevel cloud system for autonomous vehicles which was built over the Tactile Internet. In addition, base stations at the edge of the radio-access network (RAN) with different technologies of antennas are used in our system. Finally, simulation results show that the proposed system with multilevel clouding can significantly reduce the round-trip latency and the network congestion. In addition, our system can be adapted in the mobility scenario.


Author(s):  
Gee-Kung Chang ◽  
Lin Cheng

A multi-tier radio access network (RAN) combining the strength of fibre-optic and radio access technologies employing adaptive microwave photonics interfaces and radio-over-fibre (RoF) techniques is envisioned for future heterogeneous wireless communications. All-band radio spectrum from 0.1 to 100 GHz will be used to deliver wireless services with high capacity, high link speed and low latency. The multi-tier RAN will improve the cell-edge performance in an integrated heterogeneous environment enabled by fibre–wireless integration and networking for mobile fronthaul/backhaul, resource sharing and all-layer centralization of multiple standards with different frequency bands and modulation formats. In essence, this is a ‘no-more-cells’ architecture in which carrier aggregation among multiple frequency bands can be easily achieved with seamless handover between cells. In this way, current and future mobile network standards such as 4G and 5G can coexist with optimized and continuous cell coverage using multi-tier RoF regardless of the underlying network topology or protocol. In terms of users’ experience, the future-proof approach achieves the goals of system capacity, link speed, latency and continuous heterogeneous cell coverage while overcoming the bandwidth crunch in next-generation communication networks.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Igor Bisio ◽  
Andrea Sciarrone

The telecommunication infrastructure in emergency scenarios is necessarily composed of heterogeneous radio/mobile portions. Mobile Nodes (MNs) equipped with multiple network interfaces can assure continuous communications when different Radio Access Networks (RANs) that employ different Radio Access Technologies (RATs) are available. In this context, the paper proposes the definition of a Decision Maker (DM), within the protocol stack of the MN, in charge of performing network selections and handover decisions. The DM has been designed to optimize one or more performance metrics and it is based on Multiattribute Decision Making (MADM) methods. Among several MADM techniques considered, taken from the literature, the work is then focused on the TOPSIS approach, which allows introducing some improvements aimed at reducing the computational burden needed to select the RAT to be employed. The enhanced method is called Dynamic-TOPSIS (D-TOPSIS). Finally, the numerical results, obtained through a large simulative campaign and aimed at comparing the performance and the running time of the D-TOPSIS, the TOPSIS, and the algorithms found in the literature, are reported and discussed.


2016 ◽  
Vol 54 (11) ◽  
pp. 24-32 ◽  
Author(s):  
Patrick Marsch ◽  
Icaro Da Silva ◽  
Omer Bulakci ◽  
Milos Tesanovic ◽  
Salah Eddine El Ayoubi ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 321
Author(s):  
Dmitry Baranov ◽  
Alexandr Terekhin ◽  
Dmitry Bragin ◽  
Anton Konev

The determining factor in the accelerated pace of informatization is the increase in the speed and reliability of data transmission networks. In this regard, new and existing standards are developed and modernized. A lot of organizations are constantly working on the development and implementation of new generation communication networks. This article provides an overview of available software solutions that allow us to investigate and evaluate the behavior of data networks. In particular, tools suitable for mobile communication systems were determined, having sufficient built-in functionality and allowing us to add our own implementations. NS3 has been chosen as a suitable network simulator. Apart from the review, a solution for this tool was developed. It allows estimating the reliability of data transmission from the start movement of a network node at all times during its removal from a base station.


2020 ◽  
Vol 38 (2) ◽  
pp. 409-420 ◽  
Author(s):  
Minkyu Sung ◽  
Joonyoung Kim ◽  
Eon-Sang Kim ◽  
Seung-Hyun Cho ◽  
Young-Jun Won ◽  
...  

Fuzzy Systems ◽  
2017 ◽  
pp. 1739-1765
Author(s):  
Charalampos N. Pitas ◽  
Apostolos G. Fertis ◽  
Dimitris E. Charilas ◽  
Athanasios D. Panagopoulos

The scope of this work is to present a holistic approach in quality of service (QoS) and quality of experience (QoE) characterization and prediction in modern mobile communication networks. Analytically, multi radio access technologies have been deployed in order to deliver mobile services to quality demanded consumers. Quality of Experience (QoE) parameters describe the End-to-End (E2E) quality as experienced by the mobile users. These parameters are difficult to be measured and quantified. System Quality of Service (SQoS) parameters are metrics that are closely related to the network status, and defined from the viewpoint of the service provider rather than the service user. Moreover, E2E Service Quality of Service (ESQoS) parameters describe the QoS of the services and they are obtained directly from the QoE parameters by mapping them into parameters more relevant to network operators, service providers and mobile users. A useful technique for mobile network planning and optimization is to build reliable quality estimation models for mobile voice and video telephony service.


Author(s):  
Charalampos N. Pitas ◽  
Apostolos G. Fertis ◽  
Dimitris E. Charilas ◽  
Athanasios D. Panagopoulos

The scope of this work is to present a holistic approach in quality of service (QoS) and quality of experience (QoE) characterization and prediction in modern mobile communication networks. Analytically, multi radio access technologies have been deployed in order to deliver mobile services to quality demanded consumers. Quality of Experience (QoE) parameters describe the End-to-End (E2E) quality as experienced by the mobile users. These parameters are difficult to be measured and quantified. System Quality of Service (SQoS) parameters are metrics that are closely related to the network status, and defined from the viewpoint of the service provider rather than the service user. Moreover, E2E Service Quality of Service (ESQoS) parameters describe the QoS of the services and they are obtained directly from the QoE parameters by mapping them into parameters more relevant to network operators, service providers and mobile users. A useful technique for mobile network planning and optimization is to build reliable quality estimation models for mobile voice and video telephony service.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2746
Author(s):  
José Antonio Martínez ◽  
José Ignacio Moreno ◽  
Diego Rivera ◽  
Julio Berrocal

Wireless communication networks are enhancing faster than anyone could imagine. As everybody knows, 5G is the future and the study of it is very valuable nowadays. In this context, this paper provides a characterization of the deployment of a 5G access network by an operator in Spain, identifying its capacity and the actual use to which it is being subjected today. For this, sizing methods and tools will be used to qualify the capacity of the cells currently displayed, determining a better performance than we might initially think. This paper proposes a theoretical model which identifies relevant parameters for cell dimensioning, and determining that an expansion of cell’s capacity will be necessary at a 70% of load. Subsequently, this model is evaluated, analyzing real data via a vendor, showing a high performance, but discovering that some methods used in the current deployment, such as DSS, are, perhaps, not as expected. In addition, when comparing the 5G yield 4G, the power and potential future of the former is apparent.


Sign in / Sign up

Export Citation Format

Share Document