scholarly journals The Essential Steps to Buying an Engagement Ring

2021 ◽  
Vol 1 (2) ◽  
pp. 41-45
Author(s):  
Adhiraj Singh Devra ◽  
◽  
Shanane Davis

Your partner is a rarity inside and out, and you want an engagement ring worthy of them, but while you know your beloved, you know little if anything about precious metal and gems. this article is help you with a step-by-step guide to finding the ring that is right for them and that will shine with your love for the rest of your lives. In what follows, we break it down for you from the fuzzy, like how to find out what your partner really wants, to the technical, like how a gemstone is valued and graded in the marketplace and which precious metals and alloys are best for a lifetime of beauty and wear.

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 354
Author(s):  
Anatoly M. Sazonov ◽  
Aleksei E. Romanovsky ◽  
Igor F. Gertner ◽  
Elena A. Zvyagina ◽  
Tatyana S. Krasnova ◽  
...  

The gold and platinum-group elements (PGE) mineralization of the Guli and Kresty intrusions was formed in the process of polyphase magmatism of the central type during the Permian and Triassic age. It is suggested that native osmium and iridium crystal nuclei were formed in the mantle at earlier high-temperature events of magma generation of the mantle substratum in the interval of 765–545 Ma and were brought by meimechite melts to the area of development of magmatic bodies. The pulsating magmatism of the later phases assisted in particle enlargement. Native gold was crystallized at a temperature of 415–200 °C at the hydrothermal-metasomatic stages of the meimechite, melilite, foidolite and carbonatite magmatism. The association of minerals of precious metals with oily, resinous and asphaltene bitumen testifies to the genetic relation of the mineralization to carbonaceous metasomatism. Identifying the carbonaceous gold and platinoid ore formation associated genetically with the parental formation of ultramafic, alkaline rocks and carbonatites is suggested.


2021 ◽  
Author(s):  
M. D. Prendergast

Abstract The Kapalagulu intrusion in eastern Tanzania hosts a major, 420-m-thick, stratiform/stratabound platinum group element (PGE)-bearing sulfide zone—the Lubalisi reef—within a prominent, chromititiferous, harzburgite unit close to its stratigraphic base. Several features of the vertical base and precious metal distributions (in a composite stratigraphic section based upon two deep exploration drill holes) display similarities to those of offset-type PGE reefs that formed under the overall control of Rayleigh fractionation: (1) composite layering (at several scales) defined by systematic vertical variations of sulfide and precious metal contents and intermetallic ratios, indicating repeated cycles of PGE enrichment and depletion in the order Pd-Pt-Au-Cu, and (2) in the lower part of the reef, stratigraphic offsets of the precious metal peaks below peak sulfide (Cu) content. The form and geochemistry of the reef are consistent with overturns of basal liquid layers within a liquid layering system (i.e., stable density-driven stratification of a magma chamber), plus at least two minor inputs of parental magma during which the resident magma was recharged with sulfur and metals, and the effective depletion of precious metals in the magma midway through reef development. The Lubalisi reef differs from classic offset-type PGE reefs, however, principally because individual Pd, Pt, and Au enrichment peaks are coincident, not offset. The reef is set apart from other offset-type PGE reefs in three additional ways: (1) its association with olivine cumulates that crystallized soon after initial magma emplacement and well below the first appearance of cumulus pyroxene or plagioclase (implying attainment of sulfide saturation and precious metal enrichment without prolonged concentration of sulfur and chalcophile metals by normal magma cooling and differentiation), (2) the probable role of chromite crystallization in not only triggering sulfide segregation during reef formation but also facilitating precious metal enrichment in the early stages of reef development, and (3) its great width. The early stage of fractionation may also help explain the coincident precious metal peaks through its effect on apparent precious metal partition coefficients.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 247
Author(s):  
Svetlana Ivanova ◽  
Marcela Martínez Tejada

Precious metal catalysis is often synonymous with diversity and versatility [...]


2019 ◽  
Vol 60 (10) ◽  
pp. 1853-1880 ◽  
Author(s):  
Troels F D Nielsen ◽  
C Kent Brooks ◽  
Jakob K Keiding

Abstract Preferred and modelled bulk composition of the Skaergaard intrusion are compared to coeval basaltic compositions in East Greenland and found to relate to the second evolved cycle of Geikie Plateau Formation lavas and coeval Skaergaard-like dikes in major and trace element (Mg# ∼45, Ce/Nb ∼2·5, (Dy/Yb)N ∼1·35), and precious metal composition (Pd/Pt ∼3, Au/Pt ∼2) as well as in age (∼56 Ma). Successful comparisons of precious metal compositions only occur with Skaergaard models based on mass balance. The bulk liquid of the intrusion evolved along the liquid line of descent to immiscibility between Si- and Fe-rich silicate liquids after ∼90% of crystallization (F = ∼0·10) in agreement with experimental constraints. Immiscibility led to accumulation and fractionation of the Fe-rich silicate melt in the mushy floor of the intrusion and continued accumulation of granophyre component in the remaining bulk liquid. The composition of plagioclase in the precious metal mineralized gabbro and modelling of Pd/Pt and Au/Pt in first formed droplets of sulphide melt suggest that sulphide saturation was reached in interstitial melts in crystal mushes in the floor and roof and in bulk liquid with a composition equivalent to that of the bulk liquid at lower UZa times and after crystallization of 82–85% of the bulk liquid (F = 0·19–0·16). Prior to sulphide saturation in UZa type melt, the precious metals ratios of the bulk liquid were controlled by the loss of Pt relative to Pd and Au in agreement with the low empirical and experimental solubility of Pt of ∼9ppb compared to a much higher value for Pd and Au. The relative timing between sulphide saturation (F = ∼0·18) and immiscibility between silicate melts (F = ∼0·10) and modelled precious metal ratios underpin the proposed multi-stage model for the mineralization, advocating initial accumulation in the mushy floor of the magma chamber controlled by sulphide saturation in mush melts rather than bulk melt, followed by redistribution of precious metals in a macro-rhythmic succession of gabbroic layers of the upward migrating crystallization zone.


1992 ◽  
Vol 56 (384) ◽  
pp. 289-308 ◽  
Author(s):  
Louis J. Cabri

AbstractData on the distribution of the precious metals (Au, Ag and the platinum=group elements Ru, Rh, Pd, Os, Ir, Pt) are rapidly accumulating as a consequence of the application of microbeam analytical techniques such as the electron microprobe, the proton microprobe, and the ion microprobe. The new data obtained with these techniques build on knowledge accumulated over the last 140 years using bulk analytical methods (e.g. spectrographic). The nature of the occurrence, the concentrations, and the variation in amount s of precious metals in minerals and mineral products are reviewed with comments as to the significance of the results with respect to industrial and environmental concerns. Future directions in mineral-specific analysis of trace precious-metal concentrations and applications outside of process mineralogy are discussed.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Abdul-Majeed Azad ◽  
Desikan Sundararajan

Fuel processors are required to convert sulfur-laden logistic fuels (jet fuels, diesel, and coal) into fuel cell quality hydrogen-rich reformate with little or no sulfur for extended periods. Sulfur poisons and deactivates the reforming catalyst, therefore, sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization, and evaluation of a series of nanoscale ceria-supported reforming catalysts containing three noble metals in low concentration (1 wt% ≤ total metal loading ≤ 1.33 wt%) for the steam-reforming of kerosene (a JP-8 surrogate) are reported. Their performance is quantified in terms of H2yield, tolerance towards sulfur in the fuel, and the on-stream stability and compared with that of monometal and bimetal analogs under identical conditions. Due to the inherent cooperative synergy, a trimetal catalyst was found far superior to its mono- and bimetallic analog containing same amount of the precious metal loading in terms of quality of the reformate (measured by H2level in steady-state) as well as the catalyst longevity on-stream prior to deactivation. At the same time a mechanistic correlation between the distinct role of a given precious metal and the extent of its loading in each of the formulations and quality of the corresponding desulfurized H2-rich reformate was discovered.


2002 ◽  
Vol 737 ◽  
Author(s):  
Lon A. Porter ◽  
Hee Cheul Choi ◽  
Alexander E. Ribbe ◽  
Jillian M. Buriak

ABSTRACTPrecious metals are choice materials for a myriad of applications due their high electrical conductivity, resistance to corrosion, and ligand binding specificity. Indispensable in modern electronics fabrication, precious metals also enjoy widespread use as catalysts, support substrates, and sensor elements. Recent progress towards metallization on diminishing size regimes has imposed increasingly stringent demands upon thin film preparation methodologies. Metallization techniques employed in ultra large scale integration (ULSI) device fabrication, nanoelectromechanical systems (NEMS), and arrayed nanosensors will require unparalleled control of surface morphology, deposition rate, and substrate adhesion without sacrificing throughput or cost effectiveness. Furthermore, precious metal films of this type are essential for fundamental investigations aimed at elucidating the intricate nature of interfacial topics ranging from self-assembled monolayers (SAMs) to heterogeneous catalysis. In contrast to complex and expensive vacuum methods of metallization, research in our laboratory has focused on the preparation of precious metal thin films on semiconductor substrates via electroless deposition. Thin and thick films of gold, platinum, and palladium nanoparticles have been prepared as a result of the immersion of germanium and gallium arsenide substrates into dilute, aqueous solutions of tetrachloraurate (III), tetrachloroplatinate (II), and tetrachloropalladate (II), respectively. This methodology yields nanostructured precious metal films with control over surface morphology and deposition rate. Moreover, metal films prepared in this manner exhibit excellent adhesion to the underlying semiconductor substrate. The resultant films were characterized utilizing scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and scanning probe microscopy (SPM). This method provides for the facile interfacing of metal nanostructures with group (IV) and III-IV compound semiconductor surfaces.


2020 ◽  
Vol 8 (6) ◽  
pp. 3438-3449 ◽  
Author(s):  
Facui Yang ◽  
Zhigang Yan ◽  
Jian Zhao ◽  
Shuting Miao ◽  
Dong Wang ◽  
...  

A protein-based bilayer membrane can selectively sequester precious metal ions from leaching solutions of ores and WEEE, and exhibits an adsorption capacity for gold of 1034.4 mg g−1.


2019 ◽  
Vol 14 (02) ◽  
pp. 1950006
Author(s):  
ITIR DOĞANGÜN ◽  
GAZANFER ÜNAL

We introduce a new approach to improve the forecasting performance by investigating the multifractal features and the dynamic correlations of return on spot prices of precious metals, namely, gold and platinum. The Hölder exponent of multifractal time series is employed to detect the critical fluctuations during the financial crises through measuring the multifractal behavior. We also consider co-movement of Hölder exponents and forecast the Hölder exponents of multifractal precious metal time series on coherent time periods. The results indicate that forecasting of multiple wavelet coherence of Hölder exponents of multifractal precious metal time series is efficiently improved by using Vector FARIMA and VARIMA models.


Sign in / Sign up

Export Citation Format

Share Document