scholarly journals Антагонистическая активность энтомопатогенных грибов в отношении фитопатогенных микромицетов

2021 ◽  
Author(s):  
Е. Янковская ◽  
◽  
Дмитрий Войтка ◽  
М. Федорович ◽  
А. Михнюк ◽  
...  

The researches on evaluation the influence of entomopathogenic fungi of the genuses Beauveria, Isaria and Lecanicillium influence on phytopathogenic microorganisms Alternaria solani, Botrytis ciner-ea, Sclerotinia sclerotiorum, Rhizoctonia solani, Fusarium solani, Phytophtora alni are presented. The antifungal peculiarities of tested strains – a potential basis of complex action biological preparations for plant protection are shown in vitro. The highest level of antagonistic activity has been revealed in strains Beauveria brongniartii МХ, Lecanicillium sp. аph and Isaria fumosorosea 21-2.

2015 ◽  
Vol 80 (11) ◽  
pp. 1367-1374 ◽  
Author(s):  
Yu-Wen Li ◽  
Shu-Tao Li

A series of novel dithiocarbamate derivatives bearing amide moiety 3a-3i and 4a-4i were synthesized by a facile method, and the structures of these derivatives were confirmed by 1H NMR, 13C NMR, elemental analysis and high-resolution mass spectrometry (HRMS). Their antifungal activity against five phytopathogenic fungi were evaluated, and the results showed that most of the target compounds displayed low antifungal activity in vitro against Gibberella zeae, Cytospora sp., Collectotrichum gloeosporioides, Alternaria solani, and Fusarium solani at concentration of 100 mg/L. Compound 4f and 4g exhibited significant activity against Alternaria solani and Collectotrichum gloeosporioides, respectively.


2019 ◽  
Vol 18 (4) ◽  
pp. 53-62
Author(s):  
P Asiya ◽  
PR Sreeraj ◽  
Joseph John ◽  
PB Ramya

Plant protection is an important area which needs attention since most of the hazardous inputs added into the agricultural system are in the form of plant protection chemicals. Botanicals possess a variety of promising properties which make it a better biocontrol agent. The objectives of the present study were to isolate Fusarium sp. from soil and to check the effect of botanicals against this fungal pathogen in-vitro. The antagonistic activity of botanicals was studied by co-inoculation with the Fusarium sp. isolated from rhizosphere soil. In poison food technique, the botanicals in different concentration, showed decrease in the growth of the fungal pathogen. Maximum inhibition was observed in 10% Azadiracta sp. with 64% inhibition followed by 5% Azadiracta sp. with 57.8%


Author(s):  
Balzhima Ts. Shagdarova ◽  
◽  
Natalia V. Karpova ◽  
Alla V. Il’ina ◽  
Valery P. Varlamov

Chitosan hydrolysate was obtained using nitric acid; the prevailing fraction had a molecular weight of 30 kDa and a deacetylation degree of 95%. The effect of chitosan hydrolysate when added to potato dextrose agar (PDA) in different concentrations (0.5, 1, 1.5, 2, 4, 6 and 8 mg/mL) was studied on the growth of the fungi Alternaria solani Sorauer, Fusarium solani (Mart.) Sacc. and Rhizoctonia solani J.G. Kühn. A. solani was the most sensitive to the addition of chitosan hydrolysate to PDA in radial growth experiments. On days 3 and 7 of incubation, the antifungal activity of the phytopathogen growth was 69%-92% and 69%-88%, respectively, in the concentration range of 0.5-2 mg/ml.


2021 ◽  
Vol 10 (3) ◽  
pp. e5210312994
Author(s):  
Paula Fernanda de Azevedo ◽  
Ana Carolina de Almeida ◽  
Rodrigo Domiciano Marques ◽  
Christiane Luciana da Costa ◽  
Anderson Roberto Benedetti ◽  
...  

Cassava root rot causes significant production losses. Difficulties of management, along with the lack of chemical fungicides officially registered by the Ministry of Agriculture, Livestock and Supply (MAPA), require alternative control methods. This study investigated the in vitro antagonistic activity of Trichoderma harzianum as well as a biological fertilizer MICROGEO® on Fusarium solani. The phytophatogenic strains of F. solani, called F1 and F2 were isolated from rotted cassava tubers and T. harzianum, strain ESALQ 1306, from a biological fungicide. Continuous liquid composting of bovine ruminal content, water and MICROGEO® produced the biological fertilizer. Dual culture method was used at the bioassay with T. harzianum. Sterilized (St) and unsterilized (USt) biological fertilizer were tested in different concentrations (% v/v) diluted in the culture media. Colony diameters were measured daily in order to establish the mycelial growth velocity index, inhibition percentage, aside from the sporulation rate and spore germination percentage. The mycelial growth of F. solani isolates was interrupted after hyphae encounter with T. harzianum, due to the occurrence of mycoparasitism, but without influence on the sporulation rate. Sterilized biological fertilizer induced no biocontrol, whereas the unsterilized product (concentration 2.5%) inhibited approximately 64% and 85% of the mycelial growth of isolates F1 and F2, respectively. Moreover, spore germination declined with increasing concentration. In conclusion, T. harzianum and the unsterilized biofertilizer showed in vitro antagonistic activity on F. solani.


2019 ◽  
Vol 17 (2) ◽  
pp. 142-147 ◽  
Author(s):  
Rinita Islam ◽  
Sabiha Sultana ◽  
Md. Rejaul Islam ◽  
Chhoa Mondal

Suppressive effect of aerated and non-aerated compost tea against different fungal phytopathogens, namely Alternaria solani, Bipolaris sorokiniana, Fusarium oxysporum, Pestalotia palmarum and Sclerotium rolfsii was evaluated in Plant Protection Laboratory of Agrotechnology Discipline, Khulna University, Khulna, Bangladesh during 2016. Commercial compost, “Rastic Joibo Shar” was used to prepare aerated and non-aerated compost teas at 20% and 25% concentrations. All the treatments significantly inhibited the mycelial growth of tested five fungal phytopathogens. Among the five pathogens 25% concentration of non-aerated compost tea gave highest mycelial growth inhibition (76%) of Sclerotium rolfsii. Colony characteristics of five phytopathogens were significantly varied in all aspect by treating aerated and non-aerated compost teas at different concentrations. Finally it may be concluded that both aerated and non-aerated compost teas have suppressing  effect on radial mycelial growth Thus compost tea may be used as alternatives to inorganic fertilizers/fungicides to suppress the pathogenic activity of the soil borne fungal phytopathogens. Thus based on the efficacy of in-vitro experiments, efficacy in field condition can be assessed against different diseases. J. Bangladesh Agril. Univ. 17(2): 142–147, June 2019


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252823
Author(s):  
Haifa Ben Gharsa ◽  
Meriam Bouri ◽  
Amira Mougou Hamdane ◽  
Christina Schuster ◽  
Andreas Leclerque ◽  
...  

The reduction of the use chemical pesticides in agriculture is gaining importance as an objective of decision-makers in both politics and economics. Consequently, the development of technically efficient and economically affordable alternatives as, e.g., biological control agents or practices is highly solicited. Crown gall disease of dicotyledonous plants is caused by ubiquitous soil borne pathogenic bacteria of the Agrobacterium tumefaciens species complex, that comprises the species Agrobacterium fabrum and represents a globally relevant plant protection problem. Within the framework of a screening program for bacterial Agrobacterium antagonists a total of 14 strains were isolated from Tunisian soil samples and assayed for antagonistic activity against pathogenic agrobacteria. One particularly promising isolate, termed strain MBY2, was studied more in depth. Using a Multilocus Sequence Analysis (MLSA) approach, the isolate was assigned to the taxonomic species Bacillus velezensis. Strain MBY2 was shown to display antagonistic effects against the pathogenic A. fabrum strain C58 in vitro and to significantly decrease pathogen populations under sterile and non-sterile soil conditions as well as in the rhizosphere of maize and, to a lower extent, tomato plants. Moreover, the ability of B. velezensis MBY2 to reduce C58-induced gall development has been demonstrated in vivo on stems of tomato and almond plants. The present study describes B. velezensis MBY2 as a newly discovered strain holding potential as a biological agent for crown gall disease management.


2021 ◽  
Vol 61 (4) ◽  
pp. 327-337

The metabolic activity of yeasts, as well as their common occurrence in the environment make them a potential source of compounds that can be used in biological plant protection. The article presents health-promoting effects of yeast on plants. The pro-health effect of yeast is related to the ability to provide plants with dissolved nutrients. Yeasts can also indirectly activate plant defence mechanisms and improve plant health status. The bioremediation properties and antagonism of yeasts against numerous economically important phytopathogens play an important role here. The research is also indicated that yeasts (Pichia membranifaciens, Pichia fermentans and Meyrozyma guilliermondii) in vitro show an antagonistic activity against their phytopathogens (Alternaria alternata, Rhizoctonia solani and Colletotrichum coccodes). All the mentioned aspects of yeast activity can be useful in creating high-quality biofertilizers and biopesticides.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


Mycoses ◽  
2021 ◽  
Author(s):  
Hamid Badali ◽  
Connie Cañete‐Gibas ◽  
Hoja Patterson ◽  
Carmita Sanders ◽  
Barbara Mermella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document