scholarly journals THE EFFECT OF CHITOSAN HYDROLYSATE ON THE FUNGI ALTERNARIA SOLANI, FUSARIUM SOLANI AND RHIZOCTONIA SOLANI IN VITRO

Author(s):  
Balzhima Ts. Shagdarova ◽  
◽  
Natalia V. Karpova ◽  
Alla V. Il’ina ◽  
Valery P. Varlamov

Chitosan hydrolysate was obtained using nitric acid; the prevailing fraction had a molecular weight of 30 kDa and a deacetylation degree of 95%. The effect of chitosan hydrolysate when added to potato dextrose agar (PDA) in different concentrations (0.5, 1, 1.5, 2, 4, 6 and 8 mg/mL) was studied on the growth of the fungi Alternaria solani Sorauer, Fusarium solani (Mart.) Sacc. and Rhizoctonia solani J.G. Kühn. A. solani was the most sensitive to the addition of chitosan hydrolysate to PDA in radial growth experiments. On days 3 and 7 of incubation, the antifungal activity of the phytopathogen growth was 69%-92% and 69%-88%, respectively, in the concentration range of 0.5-2 mg/ml.

2006 ◽  
Vol 51 (1) ◽  
pp. 79-86 ◽  
Author(s):  
A.C. Odebode ◽  
S.A. Jonker ◽  
C.C. Joseph ◽  
S.W. Wachira

The anti-fungal activity of schefflone, a mixture of dimmer, 3,5 dimethoxy carvacrol and annonaceous acetogenin, extracted from stem-bark and root of Uvaria scheffleri and Artabotrys bruchypetalus against Fusarium solani, Botryodiplodia theobromae, Asperillus niger and Aspergillus flavus was determined. An in-vitro bioassay showed that the minimum inhibitory effect of the compounds to the fungal pathogens occurred at 200 ppm in both radial growth and mycelia dry weight measurements. Acetogenin from A brachypetalus had a very strong anti-fungal effect on all the test fungi. The effects of the compounds were more pronounced on F solani than on the other. The bioassay methods also play a significant role in the sensitivity of the samples on the pathogens. .


2020 ◽  
Vol 10 (11) ◽  
pp. 3797
Author(s):  
Yin Jia ◽  
Liuyu Yin ◽  
Fengyu Zhang ◽  
Mei Wang ◽  
Mingliang Sun ◽  
...  

To avoid the lacquerware of the Nanhai No. 1 shipwreck from being corroded by microorganisms and to improve the knowledge on microbial ecology of the wood lacquers, we conducted a series of tests on the two water samples storing the lacquerware and colonies on the surface of the lacquerware. The high-throughput sequencing detected dominant fungal communities. After that, the fungal strains were isolated and then identified by amplification of ITS- 18S rRNA. Then the activity of ligninolytic and cellulolytic enzymes was detected on potato dextrose agar (PDA) plates with 0.04% (v/v) guaiacol and carboxymethyl cellulose (CMC) agar plates. Finally, we tested the biocide susceptibility of these fungi. Penicillium chrysogenum (NK-NH3) and Fusarium solani (NK- NH1) were the dominant fungi in the sample collected in April 2016 and June 2017. What is more, both showed activity of ligninolytic and cellulolytic enzymes. Four biocidal products (Preventol® D7, P91, BIT 20N, and Euxyl® K100) inhibited the growth of the fungal species in vitro effectively. In further research, the microbial community and environmental parameters in the museum should be monitored to assess the changes in the community and to detect potential microbial outbreaks.


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 620-622
Author(s):  
M. Porras ◽  
C. Barrau ◽  
B. Santos ◽  
F.T. Arroyo ◽  
C. Blanco ◽  
...  

Effect of temperature on growth and antagonistic ability of Trichoderma spp. isolated from local strawberry culture and commercial product, against Rhizoctonia solani, strawberry pathogen, was studied in vitro. Trials were carried out twice, at 10, 25 and 30°C. Inhibitor effect was evaluated by radial growth measures of established duals on PDA’s dishes, using Royse and Ries formula, to evaluate the percentage inhibition of radial growth. Design of dishes was a randomized complete block, considering 10 replicates. Data were analyzed statistically by two-way analysis of variance. The objective has been to determine the most competitive Trichoderma strain and the best temperature that produce the inhibiting effect on the pathogen growth. Local strain has the best behavior at 10 and 25°C.


2020 ◽  
Vol 11 (5) ◽  
pp. 1135-1147
Author(s):  
Talina Olivia Martínez-Martínez ◽  
Brenda Zulema Guerrero-Aguilar ◽  
Víctor Pecina-Quintero ◽  
Enrique González-Pérez ◽  
Juan Gabriel Angeles-Núñez

El garbanzo es una leguminosa, que se cultiva en dos regiones de México principalmente, noroeste (Sonora, Sinaloa y Baja california) y la región de El Bajío (Guanajuato, Michoacán y Jalisco); sin embargo, cada año la producción del cultivo está comprometida con la fusariosis vascular, una de las principales enfermedades que afectan al cultivo y que está asociada al complejo fúngico Fusarium oxysporum, Fusarium solani, Rhizoctonia solani, Macrophomina phaseolina y Sclerotium rolfsii. Una alternativa de control biológico es la aplicación de Trichoderma, la que además tiene un efecto indirecto en la nutrición de la planta. El objetivo de este estudio fue determinar el antagonismo in vitro de dos cepas de Trichoderma harzianum (T1 y T2) y su efecto como biofertilizante. Se realizaron confrontaciones in vitro contra cepas de las razas de Fusariumoxysporum f. sp. ciceris (Foc 0, 1B/C, 5 y 6), Fusarium solani, Macrophomina phaseolina (MSonora y M-GTO) y Sclerotium rolfsii. Se evaluó el efecto de T2 como biofertilizante (TB) midiendo las variables: número de flores, vainas, altura de la planta, diámetro del tallo, longitud de la raíz y rendimiento de grano. Las dos cepas de T. harzianum mostraron antagonismo en diferente escala contra los patógenos. Adicionalmente, con el tratamiento donde se aplicó T. harzianum (TB) se presentaron incrementos en el número de flores (30%), vainas (24%), altura (3%), diámetro de las plantas (3.5%), así como la longitud de la raíz (13%) y rendimiento del grano (23%).


2019 ◽  
Vol 49 ◽  
pp. e1245
Author(s):  
Ernesto Cerna-Chávez ◽  
Gibran Alejandro-Rojas ◽  
Yisa María Ochoa-Fuentes ◽  
Luis Aguirre-Uribe ◽  
Jerónimo Landeros-Flores ◽  
...  

Antecedentes: Los productos naturales presentan un alto potencial para remplazar a los fungicidas sintéticos, sin embargo, estos compuestos varían dependiendo de la etapa de desarrollo de la planta y condiciones climáticas de colecta, así como de la mezcla de compuestos presentes en el material vegetal. La separación de estos principios activos y la evaluación de su eficacia sobre diversos hongos fitopatógenos, podrían incrementar su uso bajo un esquema biorracional y de acuerdo con los principios de la química verde.Objetivo: Evaluar in vitro el efecto de los principios activos botánicos (PAB) de 1-8 cineol (Eucaliptol), β-citronelol, D-limoneno y alil isotiocianato, sobre el crecimiento micelial de los hongos Alternaria solani, Fusarium oxysporum y Rhizoctonia solani. Métodos: Se determinó la concentración inhibitoria (CI50) de los PAB para cada especie de fitopatógeno, mediante bioensayos en medio de cultivo PDA envenenado. Se prepararon placas de cultivo con ocho concentraciones más un testigo por cada compuesto, que fluctuaron entre 20-160 ppm para β-citronelol, 500 a 4000 ppm para alil isotiocianato y entre 1000 a 4500 ppm para eucaliptol y D-limoneno, con intervalos de 20 y 500 ppm, respectivamente. Se tomaron lecturas diarias del crecimiento micelial hasta el cubrimiento de la caja de Petri (Ø 9 cm). A los resultados se les aplicó un análisis Probit por el método de máxima verosimilitud para determinar la CI50 y sus límites fiduciales.Resultados y conclusión: β-citronelol presentó las CI50, más bajas, seguido de alil isotocianato, D-limoneno y eucaliptol. Las CI50 de β-citronelol fueron de 5.44, 6.25 y 6.89 ppm para F. oxysporum, R. solani y A. solani respectivamente. De acuerdo con los resultados obtenidos, se recomienda el uso de estos PAB’s para el control de los fitopatógenos estudiados.


2002 ◽  
Vol 51 (1-2) ◽  
pp. 107-114 ◽  
Author(s):  
I. Jevcsák ◽  
Bálint Oldal ◽  
L. Ködöböcz ◽  

The antagonistic effect of thirteen Pseudomonas aeruginosa and thirteen strains of other Pseudomonas species was studied on the soil-borne phytopathogenic Rhizoctonia solani and Fusarium solani fungi.  The inhibition of pathogen colony growth was tested with two different in vitro techniques using the same type of culture media. In case of the spread slant technique the antagonists induced a significantly stronger inhibition on the growth of pathogens than in case of spot transfer. Among the 26 investigated Pseudomonas strains, P. aeruginosa strains were generally more effective against the fungal pathogens. Rhizoctonia solani proved to be affected to a greater extent by the bacterial strains studied than the Fusarium solani representative. The possibility of in vitro strain selection of biocontrol microbes is being further discussed .


2015 ◽  
Vol 80 (11) ◽  
pp. 1367-1374 ◽  
Author(s):  
Yu-Wen Li ◽  
Shu-Tao Li

A series of novel dithiocarbamate derivatives bearing amide moiety 3a-3i and 4a-4i were synthesized by a facile method, and the structures of these derivatives were confirmed by 1H NMR, 13C NMR, elemental analysis and high-resolution mass spectrometry (HRMS). Their antifungal activity against five phytopathogenic fungi were evaluated, and the results showed that most of the target compounds displayed low antifungal activity in vitro against Gibberella zeae, Cytospora sp., Collectotrichum gloeosporioides, Alternaria solani, and Fusarium solani at concentration of 100 mg/L. Compound 4f and 4g exhibited significant activity against Alternaria solani and Collectotrichum gloeosporioides, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Lydia G. Mugao ◽  
Phyllis W. Muturi ◽  
Bernard M. Gichimu ◽  
Ezekiel K. Njoroge

Tomato production is constrained by fungal diseases especially the early and late blight caused by Alternaria solani and Phytophthora infestans, respectively. Control of the two diseases is usually by use of synthetic fungicides which have a long residue effect and also contribute to environmental pollution. Innovative use of biocontrols may offer an eco-friendly and more sustainable solution. This study tested the in vitro efficacy of crude extracts and essential oils of ginger, garlic, tick berry, and Mexican marigold in inhibition of radial growth of A. solani and P. infestans. Extraction of the crude extracts was done using distilled water, ethanol, and methanol solvents, while essential oils were extracted using the dry steam distillation method. The extracts and essential oils were used to amend the growth media of the test pathogens before introducing the precultured pathogens. Sterile distilled water and synthetic fungicide, Ridomil Gold®, were used as positive and negative controls, respectively. Fungal growth inhibition was determined by measuring the radial growth of the test pathogens. Both the crude extracts and the essential oils portrayed some efficacy against the test pathogens. Garlic crude extracts were found to be the most effective, while ethanol was the most suitable extraction solvent. Essential oils were more effective in restricting the pathogen growth than crude extracts. Ginger and garlic oil was found to be as effective as the synthetic fungicide, and thus it was concluded that the two plants have strong antifungal properties with high potential of being utilized as biofungicides. However, effective utilization of these products in farmers’ fields may require industrial formulation to improve their efficiency.


Agro-Science ◽  
2015 ◽  
Vol 13 (1) ◽  
pp. 31 ◽  
Author(s):  
FN Ugwuja ◽  
JNC Maduewesi ◽  
KI Ugwoke ◽  
JI Mbadianya

2017 ◽  
Vol 5 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Srijana Bastakoti ◽  
Shiva Belbase ◽  
Shrinkhala Manandhar ◽  
Charu Arjyal

Soil borne pathogenic fungi are of major concern in agriculture which significantly decreases the plant yield. Chemically controlled plant imposes environmental threats potentially dangerous to humans as well as other animals. Thus, application of biological methods in plant disease control is more effective alternative technique. This study was carried out to isolate Trichoderma species from soil sample and to assess its in vitro biocontrol efficacy against fungal pathogens viz. Sclerotium rolfsii, Sclerotionia sclerotiorum, Fusarium solani and Rhizoctonia solani. Biocontrol efficacy testing of isolates against different fungal pathogens was performed by dual culture technique.In this study, 5 different Trichoderma species were isolated from 26 various soil samples and were tested against four fungal soil-borne pathogens. Inhibition percentage of radial growth of Sclerotium rolfsii by three of the Trichoderma isolates was found to be 100%; about 62% and 68% of maximum inhibition was observed against Rhizoctonia solani and Fusarium solani respectively whereas Sclerotionia sclerotiorum was inhibited maximum up to 23%. This in vitro study revealed that although Trichoderma species plays an important role in controlling all type of soil borne fungal plant pathogens, however, isolates as biocontrol agent against Sclerotium rolfsii was found to be more efficient in comparison to other pathogens.Nepal Journal of Biotechnology. Dec. 2017 Vol. 5, No. 1: 39-49


Sign in / Sign up

Export Citation Format

Share Document