scholarly journals Prediction Model of Soil Electrical Conductivity Based on ELM Optimized by Bald Eagle Search Algorithm

2021 ◽  
Vol 25 (2) ◽  
pp. 50-56
Author(s):  
Ying Huang ◽  
◽  
Hao Jiang ◽  
Weixing Wang ◽  
Daozong Sun ◽  
...  

Soil electrical conductivity is one of the indispensable and important parameters in fine agriculture management, and a suitable soil electrical conductivity can promote good plant growth. Prediction model of soil electrical conductivity is constructed to effectively obtain the conductivity values of soil, which can provide a reference basis for irrigation and fertilization management and prediction evaluation in fine agriculture. Prediction model of soil electrical conductivity based on extreme learning machine (ELM) optimized by bald eagle search (BES) algorithm is proposed in this paper. In the prediction model, the input weights and bias values of the ELM network were optimized using the BES algorithm, and the performance of the model was evaluated with parameters such as mean square error (MSE), coefficient of determination (R^2). Also, the correlations of parameters such as soil temperature, moisture content, pH, and water potential in the soil conductivity prediction model were determined using the exploratory data analysis (EDA) and HeatMap heat map tools. Finally, the proposed model was compared with back propagation neural network (BP), radial basis function networks (RBF), support vector machine (SVM), gated recurrent neural network (GRNN), long short-term memory (LSTM), particle swarm algorithm (PSO) optimization ELM, genetic algorithm (GA) optimized ELM prediction model. The experimental results showed that MSE, R^2 of the proposed model are 4.09 and 0.941, which are better than the other models. Also the results verified the effectiveness of the proposed method, which is a feasible prediction method to guide the irrigation and fertilization management in fine agriculture, because of its good prediction effect on soil conductivity.

2012 ◽  
Vol 241-244 ◽  
pp. 1550-1555 ◽  
Author(s):  
Sheng Peng Liu ◽  
Ye Zhang

The forecasting to future developments of the city fire time series is a challenging task that has been addressed by many researchers due to the importance. In this paper, a Nonlinear Auto-Regressive (NAR) prediction model is applied to forecast the city fire data based on support vector regression. The performances of the NAR prediction model in city fire forecasting are compared with the BP neural network method. The experimental results show that the proposed model performs best.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xue-cun Yang ◽  
Xiao-ru Yan ◽  
Chun-feng Song

For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM) is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM) and kernel function extreme learning machine prediction model (KELM). The results prove that mean square error (MSE) for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.


Author(s):  
Bowen Gao ◽  
Dongxiu Ou ◽  
Decun Dong ◽  
Yusen Wu

Accurate prediction of train delay recovery is critical for railway incident management and providing passengers with accurate journey time. In this paper, a two-stage prediction model is proposed to predict the recovery time of train primary-delay based on the real records from High-Speed Railway (HSR). In Stage 1, two models are built to study the influence of feature space and model framework on the prediction accuracy of buffer time in each section or station. It is found that explicitly inputting the attribute features of stations and sections to the model, instead of implicit simulation, will improve the prediction accuracy effectively. For validation purpose, the proposed model has been compared with several alternative models, namely, Logistic Regression (LR), Artificial Neutral Network (ANN), Support Vector Machine (SVM) and Gradient Boosting Tree (GBT). The results show that its remarkable performance is better than other schemes. Specifically, when the error is extended to 3[Formula: see text]min, the proposed model can achieve up to the accuracy of 94.63%. It proves that our method has high value in practical engineering application. Considering the delay propagation of trains is a complex process, our future study will focus on building delay propagation knowledge base and dispatcher experience knowledge base.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1620 ◽  
Author(s):  
Ganjar Alfian ◽  
Muhammad Syafrudin ◽  
Norma Latif Fitriyani ◽  
Muhammad Anshari ◽  
Pavel Stasa ◽  
...  

Extracting information from individual risk factors provides an effective way to identify diabetes risk and associated complications, such as retinopathy, at an early stage. Deep learning and machine learning algorithms are being utilized to extract information from individual risk factors to improve early-stage diagnosis. This study proposes a deep neural network (DNN) combined with recursive feature elimination (RFE) to provide early prediction of diabetic retinopathy (DR) based on individual risk factors. The proposed model uses RFE to remove irrelevant features and DNN to classify the diseases. A publicly available dataset was utilized to predict DR during initial stages, for the proposed and several current best-practice models. The proposed model achieved 82.033% prediction accuracy, which was a significantly better performance than the current models. Thus, important risk factors for retinopathy can be successfully extracted using RFE. In addition, to evaluate the proposed prediction model robustness and generalization, we compared it with other machine learning models and datasets (nephropathy and hypertension–diabetes). The proposed prediction model will help improve early-stage retinopathy diagnosis based on individual risk factors.


2012 ◽  
Vol 157-158 ◽  
pp. 123-126 ◽  
Author(s):  
Ning Ding ◽  
Yi Chen Wang ◽  
Ding Tong Zhang ◽  
Yu Xiang Shi ◽  
Jian Shi

Based on the theory of roughness during cylinder grinding and the theory of fuzzy-neural network, a surface roughness intelligent prediction model is developed in this paper. The feed, speed, and the vibration data are the inputs for the model. An accelerometer is used to gather the vibration signal in real time. The model is used in the grinding experiment, and verifies the feasibility of the proposed model.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Fujun Ma ◽  
Fanghao Song ◽  
Yan Liu ◽  
Jiahui Niu

The fatigue energy consumption of independent gestures can be obtained by calculating the power spectrum of surface electromyography (sEMG) signals. The existing research studies focus on the fatigue of independent gestures, while the research studies on integrated gestures are few. However, the actual gesture operation mode is usually integrated by multiple independent gestures, so the fatigue degree of integrated gestures can be predicted by training neural network of independent gestures. Three natural gestures including browsing information, playing games, and typing are divided into nine independent gestures in this paper, and the predicted model is established and trained by calculating the energy consumption of independent gestures. The artificial neural networks (ANNs) including backpropagation (BP) neural network, recurrent neural network (RNN), and long short-term memory (LSTM) are used to predict the fatigue of gesture. The support vector machine (SVM) is used to assist verification. Mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) are utilized to evaluate the optimal prediction model. Furthermore, the different datasets of the processed sEMG signal and its decomposed wavelet coefficients are trained, respectively, and the changes of error functions of them are compared. The experimental results show that LSTM model is more suitable for gesture fatigue prediction. The processed sEMG signals are appropriate for using as the training set the fatigue degree of one-handed gesture. It is better to use wavelet decomposition coefficients as datasets to predict the high-dimensional sEMG signals of two-handed gestures. The experimental results can be applied to predict the fatigue degree of complex human-machine interactive gestures, help to avoid unreasonable gestures, and improve the user’s interactive experience.


2018 ◽  
Vol 28 (05) ◽  
pp. 1750021 ◽  
Author(s):  
Alessandra M. Soares ◽  
Bruno J. T. Fernandes ◽  
Carmelo J. A. Bastos-Filho

The Pyramidal Neural Networks (PNN) are an example of a successful recently proposed model inspired by the human visual system and deep learning theory. PNNs are applied to computer vision and based on the concept of receptive fields. This paper proposes a variation of PNN, named here as Structured Pyramidal Neural Network (SPNN). SPNN has self-adaptive variable receptive fields, while the original PNNs rely on the same size for the fields of all neurons, which limits the model since it is not possible to put more computing resources in a particular region of the image. Another limitation of the original approach is the need to define values for a reasonable number of parameters, which can turn difficult the application of PNNs in contexts in which the user does not have experience. On the other hand, SPNN has a fewer number of parameters. Its structure is determined using a novel method with Delaunay Triangulation and k-means clustering. SPNN achieved better results than PNNs and similar performance when compared to Convolutional Neural Network (CNN) and Support Vector Machine (SVM), but using lower memory capacity and processing time.


Soil Research ◽  
1978 ◽  
Vol 16 (3) ◽  
pp. 311 ◽  
Author(s):  
AV Blackmore

The use of directly measured electrical conductivity of soil to provide an index of soil salinity is discussed. It is suggested that if an anion exclusion mechanism within the microfabric of a wet clay soil can lead to a non-uniform, but stable, range of salt concentrations, then the validity of such an index would be jeopardized. Experiments involved the monitoring of soil electrical conductivity during leaching and diffusion of salts from stable clay-soil aggregates packed in columns and cells. The equilibrium values of conductivity are inversely related to exchangeable cation valence, but are not affected by the type of anion involved. The soil conductivity was often much smaller than the value inferred from the amount of salts actually extracted from the columns or contained in the small isolated electrical conductivity cells. The results are consistent with the operation of a salt exclusion mechanism in the smaller pores of the soil fabric. With monovalent cations and relatively low electrolyte concentrations, the trapping of salts within the microfabric is maximized, while in contrast, with aluminium and aged hydrogen clays the exclusion effect is almost completely suppressed, in accord with double-layer theory. If salts are retained against concentration gradients within the fine structure units of the soil, current-transmitting regions between the units are of correspondingly high resistance, and this is reflected in a soil electrical conductivity value that is low relative to the amount of electrolyte between the electrodes. The observed soil conductivity may, however, bear a simple relationship to the salt fraction of the soil actually 'available' to plant roots.


Sign in / Sign up

Export Citation Format

Share Document