scholarly journals Investigation of the Sodium Titanate Surface Behavior in Corrosive Oral Fluids by Comparing with Conventional Titanium Surfaces

2021 ◽  
Vol 27 (1) ◽  
pp. 89-97
Author(s):  
Ahmet Kürşad ÇULHAOĞLU ◽  
Özkan ÖZGÜL ◽  
Umut TEKİN ◽  
Ercüment ÖNDER
Author(s):  
J. E. Laffoon ◽  
R. L. Anderson ◽  
J. C. Keller ◽  
C. D. Wu-Yuan

Titanium (Ti) dental implants have been used widely for many years. Long term implant failures are related, in part, to the development of peri-implantitis frequently associated with bacteria. Bacterial adherence and colonization have been considered a key factor in the pathogenesis of many biomaterial based infections. Without the initial attachment of oral bacteria to Ti-implant surfaces, subsequent polymicrobial accumulation and colonization leading to peri-implant disease cannot occur. The overall goal of this study is to examine the implant-oral bacterial interfaces and gain a greater understanding of their attachment characteristics and mechanisms. Since the detailed cell surface ultrastructure involved in attachment is only discernible at the electron microscopy level, the study is complicated by the technical problem of obtaining titanium implant and attached bacterial cells in the same ultra-thin sections. In this study, a technique was developed to facilitate the study of Ti implant-bacteria interface.Discs of polymerized Spurr’s resin (12 mm x 5 mm) were formed to a thickness of approximately 3 mm using an EM block holder (Fig. 1). Titanium was then deposited by vacuum deposition to a film thickness of 300Å (Fig. 2).


2012 ◽  
pp. 141208072802005
Author(s):  
Fabiano Ribeiro Cirano ◽  
ADRIANE TOGASHI ◽  
MARCIA MARQUES ◽  
FRANCISCO PUSTIGLIONI ◽  
LUIZ LIMA

1985 ◽  
Author(s):  
R. S. Bretzlaff ◽  
T. A. Freitab ◽  
A. Y. Lee

Author(s):  
Ann‐Kathrin Meinshausen ◽  
Maria Herbster ◽  
Christoph Zwahr ◽  
Marcos Soldera ◽  
Andreas Müller ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1441
Author(s):  
Antonio Scarano ◽  
Tiziana Orsini ◽  
Fabio Di Carlo ◽  
Luca Valbonetti ◽  
Felice Lorusso

Background—the graphene-doping procedure represents a useful procedure to improve the mechanical, physical and biological response of several Polymethyl methacrylate (PMMA)-derived polymers and biomaterials for dental applications. The aim of this study was to evaluate osseointegration of Graphene doped Poly(methyl methacrylate) (GD-PMMA) compared with PMMA as potential materials for dental implant devices. Methods—eighteen adult New Zealand white male rabbits with a mean weight of approx. 3000 g were used in this research. A total of eighteen implants of 3.5 mm diameter and 11 mm length in GD-PMMA and eighteen implants in PMMA were used. The implants were placed into the articular femoral knee joint. The animals were sacrificed after 15, 30 and 60 days and the specimens were evaluated by µCT and histomorphometry. Results—microscopically, all 36 implants, 18 in PMMA and 18 in DG-PMMA were well-integrated into the bone. The implants were in contact with cortical bone along the upper threads, while the lower threads were in contact with either newly formed bone or with marrow spaces. The histomorphometry and µCT evaluation showed that the GP-PMMA and PMMA implants were well osseointegrated and the bone was in direct contact with large portions of the implant surfaces, including the space in the medullary canal. Conclusions—in conclusion, the results suggest that GD-PMMA titanium surfaces enhance osseointegration in rabbit femurs. This encourages further research to obtain GD-PMMA with a greater radiopacity. Also, further in vitro and vivo animal studies are necessary to evaluate a potential clinical usage for dental implant applications.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 550
Author(s):  
Peter A. C. Maple

In the UK, population virus or antibody testing using virus swabs, serum samples, blood spots or oral fluids has been performed to a limited extent for several diseases including measles, mumps, rubella and hepatitis and HIV. The collection of population-based infection and immunity data is key to the monitoring of disease prevalence and assessing the effectiveness of interventions such as behavioural modifications and vaccination. In particular, the biological properties of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its interaction with the human host have presented several challenges towards the development of population-based immunity testing. Measuring SARS-CoV-2 immunity requires the development of antibody assays of acceptable sensitivity and specificity which are capable of accurately detecting seroprevalence and differentiating protection from non-protective responses. Now that anti-COVID-19 vaccines are becoming available there is a pressing need to measure vaccine efficacy and the development of herd immunity. The unprecedented impact of the SARS-CoV-2 pandemic in the UK in terms of morbidity, mortality, and economic and social disruption has mobilized a national scientific effort to learn more about this virus. In this article, the challenges of testing for SARS-CoV-2 infection, particularly in relation to population-based immunity testing, will be considered and examples given of relevant national level studies.


Author(s):  
S.C. Vanithakumari ◽  
Ambar Kumar Choubey ◽  
C. Thinaharan ◽  
Ram Kishor Gupta ◽  
R.P. George ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2879
Author(s):  
Javier Gil ◽  
Jose Maria Manero ◽  
Elisa Ruperez ◽  
Eugenio Velasco-Ortega ◽  
Alvaro Jiménez-Guerra ◽  
...  

The surface modification by the formation of apatitic compounds, such as hydroxyapatite, improves biological fixation implants at an early stage after implantation. The structure, which is identical to mineral content of human bone, has the potential to be osteoinductive and/or osteoconductive materials. These calcium phosphates provoke the action of the cell signals that interact with the surface after implantation in order to quickly regenerate bone in contact with dental implants with mineral coating. A new generation of calcium phosphate coatings applied on the titanium surfaces of dental implants using laser, plasma-sprayed, laser-ablation, or electrochemical deposition processes produces that response. However, these modifications produce failures and bad responses in long-term behavior. Calcium phosphates films result in heterogeneous degradation due to the lack of crystallinity of the phosphates with a fast dissolution; conversely, the film presents cracks, which produce fractures in the coating. New thermochemical treatments have been developed to obtain biomimetic surfaces with calcium phosphate compounds that overcome the aforementioned problems. Among them, the chemical modification using biomineralization treatments has been extended to other materials, including composites, bioceramics, biopolymers, peptides, organic molecules, and other metallic materials, showing the potential for growing a calcium phosphate layer under biomimetic conditions.


2021 ◽  
pp. 104063872110021
Author(s):  
Giovani Trevisan ◽  
Leticia C. M. Linhares ◽  
Kent J. Schwartz ◽  
Eric R. Burrough ◽  
Edison de S. Magalhães ◽  
...  

Every day, thousands of samples from diverse populations of animals are submitted to veterinary diagnostic laboratories (VDLs) for testing. Each VDL has its own laboratory information management system (LIMS), with processes and procedures to capture submission information, perform laboratory tests, define the boundaries of test results (i.e., positive or negative), and report results, in addition to internal business and accounting applications. Enormous quantities of data are accumulated and stored within VDL LIMSs. There is a need for platforms that allow VDLs to exchange and share portions of laboratory data using standardized, reliable, and sustainable information technology processes. Here we report concepts and applications for standardization and aggregation of data from swine submissions to multiple VDLs to detect and monitor porcine enteric coronaviruses by RT-PCR. Oral fluids, feces, and fecal swabs were the specimens submitted most frequently for enteric coronavirus testing. Statistical algorithms were used successfully to scan and monitor the overall and state-specific percentage of positive submissions. Major findings revealed a consistently recurrent seasonal pattern, with the highest percentage of positive submissions detected during December–February for porcine epidemic diarrhea virus, porcine deltacoronavirus, and transmissible gastroenteritis virus (TGEV). After 2014, very few submissions tested positive for TGEV. Monitoring VDL data proactively has the potential to signal and alert stakeholders early of significant changes from expected detection. We demonstrate the importance of, and applications for, data organized and aggregated by using LOINC and SNOMED CTs, as well as the use of customized messaging to allow inter-VDL exchange of information.


Sign in / Sign up

Export Citation Format

Share Document