scholarly journals A Proficient Adaptive K-means based Brain Tumor Segmentation and Detection Using Deep Learning Scheme with PSO

Author(s):  
Anitha T ◽  
◽  
Charlyn Pushpa Latha G ◽  
Surendra Prasad M ◽  
◽  
...  

Determining the size of the tumor is a significant obstacle in brain tumour preparation and objective assessment. Magnetic Resonance Imaging (MRI) is one of the non-invasive methods that has emanated without ionizing radiation as a front-line diagnostic method for brain tumour. Several approaches have been applied in modern years to segment MRI brain tumours automatically. These methods can be divided into two groups based on conventional learning, such as support vector machine (SVM) and random forest, respectively hand-crafted features and classifier method. However, after deciding hand-crafted features, it uses manually separated features and is given to classifiers as input. These are the time consuming activity, and their output is heavily dependent upon the experience of the operator. This research proposes fully automated detection of brain tumor using Convolutional Neural Network (CNN) to avoid this problem. It also uses brain image of high grade gilomas from the BRATS 2015 database. The suggested research performs brain tumor segmentation using clustering of k-means and patient survival rates are increased with this proposed early diagnosis of brain tumour using CNN.

Author(s):  
Manimurugan S ◽  

Determining the size of the tumor is a significant obstacle in brain tumour preparation and objective assessment. Magnetic Resonance Imaging (MRI) is one of the non-invasive methods that has emanated without ionizing radiation as a front-line diagnostic method for brain tumour. Several approaches have been applied in modern years to segment MRI brain tumours automatically. These methods can be divided into two groups based on conventional learning, such as support vectormachine (SVM) and random forest, respectively hand-crafted features and classifier method. However, after deciding hand-crafted features, it uses manually separated features and is given to classifiers as input. These are the time consuming activity, and their output is heavily dependent upon the experience of the operator. This research proposes fully automated detection of brain tumor using Convolutional Neural Network (CNN) to avoid this problem. It also uses brain image of high grade gilomas from the BRATS 2015 database. The suggested research performs brain tumor segmentation using clustering of k-means and patient survival rates are increased with this proposed early diagnosis of brain tumour using CNN.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Samir Kumar Bandyopadhyay

Computer aided technology is used in biomedical image processing. In biomedical analysis features are extracted and then the proposed method will detect any abnormalities present or not in the system to be considered. In recent days the detection of brain tumour through image processing is made in medical diagnosis. The separation of tumor is made by the process of segmentation. Brain in human is the most complicated and delicate anatomical structure. There are various brain ailments in human but the indication of cancer in brain tumour may be fatal for the human. Brain tumor can be malignant or benign. The neurologist or neurosurgeon wants to know the exact location, size, shape and texture of tumor from Magnetic Resonance Imaging (MRI) of brain before going to the operation of the brain tumour or decided whether operation of removing brain tumour is at all necessary or not. The disease is analyzed since operation may cause death to the patient. Initially they took a chance by prescribing medicines to see whether there is any improvement of the condition of the patient. If the result is not satisfactory then there is no option other than operation of the tumor. Doctors also take an attempt to find the texture of the tumor since it may help them to know the progress of the tumour. In addition to Brain tumor segmentation, the detection of surface of the texture of brain tumor is required for proper treatment. The chapter proposed methods for detection of the progressive nature of the texture in the tumor presence in brain. For this process segmentation of tumor from other parts of brain is essential. In the chapter segmentation techniques are presented before the texture analysis process is given. Finally, comparisons of the proposed method with other methods are analyzed.


2021 ◽  
Vol 23 (09) ◽  
pp. 981-993
Author(s):  
T. Balamurugan ◽  
◽  
E. Gnanamanoharan ◽  

Brain tumor segmentation is a challenging task in the medical diagnosis. The primary aim of brain tumor segmentation is to produce precise characterizations of brain tumor areas using adequately placed masks. Deep learning techniques have shown great promise in recent years for solving various computer vision problems such as object detection, image classification, and semantic segmentation. Numerous deep learning-based approaches have been implemented to achieve excellent system performance in brain tumor segmentation. This article aims to comprehensively study the recently developed brain tumor segmentation technology based on deep learning in light of the most advanced technology and its performance. A genetic algorithm based on fuzzy C-means (FCM-GA) was used in this study to segment tumor regions from brain images. The input image is scaled to 256×256 during the preprocessing stage. FCM-GA segmented a preprocessed MRI image. This is a versatile advanced machine learning (ML) technique for locating objects in large datasets. The segmented image is then subjected to hybrid feature extraction (HFE) to improve the feature subset. To obtain the best feature value, Kernel Nearest Neighbor with a genetic algorithm (KNN-GA) is used in the feature selection process. The best feature value is fed into the RESNET classifier, which divides the MRI image into meningioma, glioma, and pituitary gland regions. Real-time data sets are used to validate the performance of the proposed hybrid method. The proposed method improves average classification accuracy by 7.99 % to existing Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) classification algorithms


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wentao Wu ◽  
Daning Li ◽  
Jiaoyang Du ◽  
Xiangyu Gao ◽  
Wen Gu ◽  
...  

Among the currently proposed brain segmentation methods, brain tumor segmentation methods based on traditional image processing and machine learning are not ideal enough. Therefore, deep learning-based brain segmentation methods are widely used. In the brain tumor segmentation method based on deep learning, the convolutional network model has a good brain segmentation effect. The deep convolutional network model has the problems of a large number of parameters and large loss of information in the encoding and decoding process. This paper proposes a deep convolutional neural network fusion support vector machine algorithm (DCNN-F-SVM). The proposed brain tumor segmentation model is mainly divided into three stages. In the first stage, a deep convolutional neural network is trained to learn the mapping from image space to tumor marker space. In the second stage, the predicted labels obtained from the deep convolutional neural network training are input into the integrated support vector machine classifier together with the test images. In the third stage, a deep convolutional neural network and an integrated support vector machine are connected in series to train a deep classifier. Run each model on the BraTS dataset and the self-made dataset to segment brain tumors. The segmentation results show that the performance of the proposed model is significantly better than the deep convolutional neural network and the integrated SVM classifier.


Author(s):  
Tasmiya Tazeen ◽  
◽  
Mrinal Sarvagya ◽  

Intracranial tumors are a type of cancer that grows spontaneously inside the skull. Brain tumor is the cause for one in four deaths. Hence early detection of the tumor is important. For this aim, a variety of segmentation techniques are available. The fundamental disadvantage of present approaches is their low segmentation accuracy. With the help of magnetic resonance imaging (MRI), a preventive medical step of early detection and evaluation of brain tumor is done. Magnetic resonance imaging (MRI) offers detailed information on human delicate tissue, which aids in the diagnosis of a brain tumor. The proposed method in this paper is Brain Tumour Detection and Classification based on Ensembled Feature extraction and classification using CNN.


2021 ◽  
Vol 18 (1) ◽  
pp. 21-27
Author(s):  
Assalah Atiyah ◽  
Khawla Ali

Brain tumors are collections of abnormal tissues within the brain. The regular function of the brain may be affected as it grows within the region of the skull. Brain tumors are critical for improving treatment options and patient survival rates to prevent and treat them. The diagnosis of cancer utilizing manual approaches for numerous magnetic resonance imaging (MRI) images is the most complex and time-consuming task. Brain tumor segmentation must be carried out automatically. A proposed strategy for brain tumor segmentation is developed in this paper. For this purpose, images are segmented based on region-based and edge-based. Brain tumor segmentation 2020 (BraTS2020) dataset is utilized in this study. A comparative analysis of the segmentation of images using the edge-based and region-based approach with U-Net with ResNet50 encoder, architecture is performed. The edge-based segmentation model performed better in all performance metrics compared to the region-based segmentation model and the edge-based model achieved the dice loss score of 0. 008768, IoU score of 0. 7542, f1 score of 0. 9870, the accuracy of 0. 9935, the precision of 0. 9852, recall of 0. 9888, and specificity of 0. 9951.


The segmentation of MRI brain tumors utilizes computer technology to segment and label tumors and normal tissues automatically on multimodal brain images, which plays an important role in disease diagnosis, treatment planning, and surgical navigation. We propose a solution using gray-level co-occurrence matrix (GLCM) texture and an ensemble Support Vector Machine (SVM) structure.This manuscript per the authors focus on the effects of GLCM texture on brain tumor segmentation. The result is different from the application of the GLCM texture in other types of image processing.The experimental material was a dataset called BraTs2015. The segmented five different labels are normal brain, necrosis, edema, non-enhancing tumor, and enhancing tumor. The proposed model was verified with the Dice coefficient. The result demonstrated that this method has a better capacity and higher segmentation accuracy with a low computation cost.


2021 ◽  
Vol 4 (9(112)) ◽  
pp. 23-31
Author(s):  
Wasan M. Jwaid ◽  
Zainab Shaker Matar Al-Husseini ◽  
Ahmad H. Sabry

Brain tumors are the growth of abnormal cells or a mass in a brain. Numerous kinds of brain tumors were discovered, which need accurate and early detection techniques. Currently, most diagnosis and detection methods rely on the decision of neuro-specialists and radiologists to evaluate brain images, which may be time-consuming and cause human errors. This paper proposes a robust U-Net deep learning Convolutional Neural Network (CNN) model that can classify if the subject has a tumor or not based on Brain Magnetic resonance imaging (MRI) with acceptable accuracy for medical-grade application. The study built and trained the 3D U-Net CNN including encoding/decoding relationship architecture to perform the brain tumor segmentation because it requires fewer training images and provides more precise segmentation. The algorithm consists of three parts; the first part, the downsampling part, the bottleneck part, and the optimum part. The resultant semantic maps are inserted into the decoder fraction to obtain the full-resolution probability maps. The developed U-Net architecture has been applied on the MRI scan brain tumor segmentation dataset in MICCAI BraTS 2017. The results using Matlab-based toolbox indicate that the proposed architecture has been successfully evaluated and experienced for MRI datasets of brain tumor segmentation including 336 images as training data and 125 images for validation. This work demonstrated comparative performance and successful feasibility of implementing U-Net CNN architecture in an automated framework of brain tumor segmentations in Fluid-attenuated inversion recovery (FLAIR) MR Slices. The developed U-Net CNN model succeeded in performing the brain tumor segmentation task to classify the input brain images into a tumor or not based on the MRI dataset.


Sign in / Sign up

Export Citation Format

Share Document