LIGHTWEIGHT CRYPTOGRAPHIC ALGORITHM IMPLEMENTATION IN A MICROCONTROLLER SYSTEM

2021 ◽  
Vol 17 (1) ◽  
pp. 260-264
Author(s):  
Alexandru VULPE ◽  
Raluca ANDREI ◽  
Alexandru BRUMARU ◽  
Octavian FRATU

Abstract: With the development of mobile devices and the advent of smartphones, the Internet has become part of everyday life. Any category of information about weather, flight schedule, etc. it is just a click away from the keyboard. This availability of data has led to a continuous increase in connectivity between devices, from any corner of the world. Combining device connectivity with systems automation allows the collection of information, its analysis and implicitly decision-making on the basis of information. Their introduction and continued expansion of devices that communicate in networks (including the Internet) have made security issues very important devices as well as for users. One of the main methodologies that ensures data confidentiality is encryption, which protects data from unauthorized access, but at the cost of using extensive mathematical models. Due to the nature of IoT devices, the resources allocated to a device can be constrained by certain factors, some of which are related to costs and others to the physical limitations of the device. Ensuring the confidentiality of data requires the use of encryption algorithms for these interconnected devices, which provide protection while maintaining the operation of that device. The need for these types of algorithms has created conditions for the growth and development of the concept of lightweight encryption, which aim to find encryption systems that can be implemented on these categories of devices, with limited hardware and software requirements. The paper proposes a lightweight cryptographic algorithm implemented on a microcontroller system, comparing its performances with those of the already existing system (based on x86).

Author(s):  
Syed Farid Syed Adnan ◽  
Mohd Anuar Mat Isa ◽  
Habibah Hashim

Internet of Things (IoT) is a way of providing data with the physical thing that interconnected to the network, which is the Internet. The IoT devices connected to the internet, broadcast of the data to the broker or a server, becomes an open route for attackers to gain the data and making the data becomes vulnerable. Thus, the data could be altered or spoofed by an attacker which led to security issues especially on data integrity. Therefore, the data security collected from the sensors is as important as on the servers that eventually become the big data. However, most sensors are low powered devices in term of CPU, storage, memory and batteries that cryptographic algorithm computations might give overhead to the sensors and reduce the batteries even faster than it is supposed to be. Instead of looking at symmetric encryption scheme, this paper tries to explore the capabilities of the asymmetric scheme on resource constrained devices communications. Thus, this paper presents an RF communication analysis of a low consumption asymmetric encryption, the AAβ (AA-Beta) that promising to implement on the IoT devices to secure the IoT networks. The result shows only 14% size increased in ciphertext from plaintext and the RF simulation communications show a better result in Raspbian OS environment compare to windows environment even though with same configurations


2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


Author(s):  
Aman Tyagi

Elderly population in the Asian countries is increasing at a very fast rate. Lack of healthcare resources and infrastructure in many countries makes the task of provding proper healthcare difficult. Internet of things (IoT) in healthcare can address the problem effectively. Patient care is possible at home using IoT devices. IoT devices are used to collect different types of data. Various algorithms may be used to analyse data. IoT devices are connected to the internet and all the data of the patients with various health reports are available online and hence security issues arise. IoT sensors, IoT communication technologies, IoT gadgets, components of IoT, IoT layers, cloud and fog computing, benefits of IoT, IoT-based algorithms, IoT security issues, and IoT challenges are discussed in the chapter. Nowadays global epidemic COVID19 has demolished the economy and health services of all the countries worldwide. Usefulness of IoT in COVID19-related issues is explained here.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4107
Author(s):  
Sharad Agarwal ◽  
Pascal Oser ◽  
Stefan Lueders

The introduction of the Internet of Things (IoT), i.e., the interconnection of embedded devices over the Internet, has changed the world we live in from the way we measure, make calls, print information and even the way we get energy in our offices or homes. The convenience of IoT products, like closed circuit television (CCTV) cameras, internet protocol (IP) phones, and oscilloscopes, is overwhelming for end users. In parallel, however, security issues have emerged and it is essential for infrastructure providers to assess the associated security risks. In this paper, we propose a novel method to detect IoT devices and identify the manufacturer, device model, and the firmware version currently running on the device using the page source from the web user interface. We performed automatic scans of the large-scale network at the European Organization for Nuclear Research (CERN) to evaluate our approach. Our tools identified 233 IoT devices that fell into eleven distinct device categories and included 49 device models manufactured by 26 vendors from across the world.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1492 ◽  
Author(s):  
Pantaleone Nespoli ◽  
David Useche Pelaez ◽  
Daniel Díaz López ◽  
Félix Gómez Mármol

The Internet of Things (IoT) became established during the last decade as an emerging technology with considerable potentialities and applicability. Its paradigm of everything connected together penetrated the real world, with smart devices located in several daily appliances. Such intelligent objects are able to communicate autonomously through already existing network infrastructures, thus generating a more concrete integration between real world and computer-based systems. On the downside, the great benefit carried by the IoT paradigm in our life brings simultaneously severe security issues, since the information exchanged among the objects frequently remains unprotected from malicious attackers. The paper at hand proposes COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel sentinel to protect smart environments from cyber threats. Our sentinel shields the IoT devices using multiple defensive rings, resulting in a more accurate and robust protection. Additionally, we discuss the current deployment of the sentinel on a commodity device (i.e., Raspberry Pi). Exhaustive experiments are conducted on the sentinel, demonstrating that it performs meticulously even in heavily stressing conditions. Each defensive layer is tested, reaching a remarkable performance, thus proving the applicability of COSMOS in a distributed and dynamic scenario such as IoT. With the aim of easing the enjoyment of the proposed sentinel, we further developed a friendly and ease-to-use COSMOS App, so that end-users can manage sentinel(s) directly using their own devices (e.g., smartphone).


2019 ◽  
Vol 11 (6) ◽  
pp. 127 ◽  
Author(s):  
Michele De Donno ◽  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Antonio Bucchiarone ◽  
Manuel Mazzara

The Internet of Things (IoT) is rapidly changing our society to a world where every “thing” is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors. While the literature mostly focuses on the security of IoT and Cloud computing as separate entities, in this article we provide an up-to-date and well-structured survey of the security issues of cloud computing in the IoT era. We give a clear picture of where security issues occur and what their potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms come from Clouds.


Author(s):  
Ishfaq Sultan ◽  
Mohammad Tariq Banday

The spatial ubiquity and the huge number of employed nodes monitoring the surroundings, individuals, and devices makes security a key challenge in IoT. Serious security apprehensions are evolving in terms of data authenticity, integrity, and confidentiality. Consequently, IoT requires security to be assured down to the hardware level, as the authenticity and the integrity need to be guaranteed in terms of the hardware implementation of each IoT node. Physically unclonable functions recreate the keys only while the chip is being powered on, replacing the conventional key storage which requires storing information. Compared to extrinsic key storage, they are able to generate intrinsic keys and are far less susceptible against physical attacks. Physically unclonable functions have drawn considerable attention due to their ability to economically introduce hardware-level security into individual silicon dice. This chapter introduces the notion of physically unclonable functions, their scenarios for hardware security in IoT devices, and their interaction with traditional cryptography.


Author(s):  
Kamalendu Pal

The internet of things (IoT) is ushering a new age of technology-driven automation of information systems into the manufacturing industry. One of the main concerns with IoT systems is the lack of privacy and security preserving schemes for controlling access and ensuring the safety of the data. Many security issues arise because of the centralized architecture of IoT-based information systems. Another concern is the lack of appropriate authentication and access control schemes to moderate the access to information generated by the IoT devices in the manufacturing industry. Hence, the question that arises is how to ensure the identity of the manufacturing machinery or the communication nodes. This chapter presents the advantages of blockchain technology to secure the operation of the modern manufacturing industry in a trustless environment with IoT applications. The chapter reviews the challenges and threats in IoT applications and how integration with blockchain can resolve some of the manufacturing enterprise information systems (EIS).


Author(s):  
Yash Choudhary ◽  
B Umamaheswari ◽  
Vijeta Kumawat

IoT or the Internet of things refers to all the physical devices connected to the internet. IoT consists of computing devices that are web-enabled and have the capability of sensing, collecting, and sending data. IoT provides the ability to remote control appliances and has many more applications. Since IoT is becoming a big part of society, it is necessary to ensure that these devices provide adequate security measures. This paper discusses various security issues in IoT systems like threats, vulnerabilities and some countermeasures which can be used to provide some security. Developing a secure device is now more important than ever, as with the increase in digitization, much of a user’s data is available on these devices. Securing data is a primary concern in any system, as internet-enabled devices are easier to hack. The idea of this paper is to spread awareness and improve the security of IoT devices.


Sign in / Sign up

Export Citation Format

Share Document