scholarly journals Thermal studies of vacuum panels of cellular structure of a passenger car

2021 ◽  
Vol 34 (06) ◽  
pp. 1707-1713
Author(s):  
Anatoly N. Balalaev ◽  
Maria A. Parenyuk ◽  
Dmitry M. Timkin

Aluminum alloys and composite materials are used in the body structures of modern passenger railway cars, which required the use of new manufacturing technologies: extrusion, pultrusion, etc. The use of new materials and new production technologies is changing the design requirements of passenger rail cars. The use of computer-aided design systems, in particular, SolidWorks Simulation, allows you to optimize the profile of cellular panels used in the construction of the body of a passenger railway car and obtained by extrusion or 3-D printing. Purpose of this work is to optimize the design stage of the enclosing structures of the body of a passenger railway car made of cellular profile panels, which can significantly reduce the heat transfer coefficient of the body walls and their mass, as well as provide the necessary strength conditions. Optimal profile of the vacuum panel, consisting of two rows of hexagonal cells, provides, according to calculations, the value of the specific thermal resistance R = 2.922 (m2 K)/W, which is 16.5% more than that of the existing body structure of a passenger rail car.

2019 ◽  
Vol 9 (11) ◽  
pp. 2339 ◽  
Author(s):  
Fan Liu ◽  
Xiaomin Ji ◽  
Gang Hu ◽  
Jing Gao

In this paper, a new parameterized surface, termed SQ-Coons surface, is proposed according to the build mode of Coons patch. The surface is always interpolated to the boundary curves, and its shape details could be controlled by the shape parameters in CE-Bézier basis functions, which makes it suitable for styling design in computer aided design (CAD). In order to exert its geometric advantages in car design, a simplified body CAD template based on characteristic lines is built according to common vehicle features. The template is built entirely from SQ-Coons surfaces, so that the overall style and detail shapes could all be modified by the control points and shape parameters of each surface. By analyzing the curvature of fifty commercial car types generated through the template and various parameters, a set of methods for constraining the range of shape parameters is proposed. On this basis, as an example, the four shape parameters of the hood surface in one model are used as variables to optimize the body shape to achieve the lowest possible aerodynamic drag coefficient in computational fluid dynamics (CFD). The results show that the design method, combining the new surface and the model template, could reflect the modeling characteristics of different cars, and improve the design and scheme adjustment efficiency in the conceptual design stage.


Author(s):  
Т. В. Самодурова ◽  
Н. Ю. Алимова ◽  
О. А. Волокитина ◽  
О. В. Гладышева

Постановка задачи. Для получения оптимальных проектных решений, удовлетворяющих условиям безопасности движения в сложных погодных условиях, необходимо сравнение вариантов автомобильных дорог по условиям снегонезаносимости. Такие расчеты должны стать составной частью системы автоматизированного проектирования САПР-АД. Результаты. Предложен системный поход к решению задачи, определен перечень информации, необходимой для проведения расчетов. Выполнен анализ результатов исследований по снегозаносимости дорог, проводимых в России и за рубежом. Предложены расчетные схемы и модели для оценки вариантов продольного профиля и земляного полотна автомобильной дороги по снегозаносимости. Предложены решения для оценки вариантов плана трассы с использованием карт с расчетными параметрами метелей. Выводы. Реализация предложенной методики проведения расчетов позволит на стадии проектирования оценить варианты автомобильной дороги по условиям снегозаносимости. Statement of the problem. In order to obtain optimal design solutions that meet the conditions of safety traffic in difficult weather conditions, it is necessary to compare the options of highways according to the snow tolerance conditions. Such calculations should become an integral part of the CAD-AD computer-aided design system. Results. A systematic approach to solving the problem is set forth, a list of information necessary for calculations is identified. The results analysis of studies on the snow-bearing capacity of roads conducted in Russia and abroad is carried out. Calculation schemes and models are suggested to evaluate options for the longitudinal profile and the roadbed for the snow-bearing capacity. Solutions for evaluating variants of the route plan using maps with calculated parameters of snowstorms are proposed. Conclusions. The implementation of the proposed calculation methodology will make it possible at the design stage to evaluate the options of the highway according to the conditions of the snow-bearing capacity.


2020 ◽  
Vol 1 (2) ◽  
pp. 81-91
Author(s):  
Frince Marbun ◽  
Richard A.M. Napitupulu

3D printing technology has great potential in today's manufacturing world, one of its uses is in making miniatures or prototypes of a product such as a piston. One of the most famous and inexpensive 3D printing (additive manufacturing) technologies is Fused Deposition Modeling (FDM), the principle FDM works by thermoplastic extrusion through a hot nozzle at melting temperature then the product is made layer by layer. The two most commonly used materials are ABS and PLA so it is very important to know the accuracy of product dimensions. FDM 3D Printing Technology is able to make duplicate products accurately using PLA material. FDM machines work by printing parts that have been designed by computer-aided design (CAD) and then exported in the form of STL or .stl files and uploaded to the slicer program to govern the printing press according to the design. Using Anet A8 brand 3D printing tools that are available to the public, Slicing of general CAD geometry files such as autocad and solidwork is the basis for making this object. This software is very important to facilitate the design process to be printed. Some examples of software that can be downloaded and used free of charge such as Repetier-Host and Cura. by changing the parameters in the slicer software is very influential in the 3D printing manufacturing process.


1970 ◽  
Vol 1 (1) ◽  
Author(s):  
Y. M. A. Khalifa ◽  
D. H. Horrocks

An investigation into the application of Genetic Algorithms (GA) for the design of electronic analog circuits is presented in this paper. In this paper an investigation of the use of genetic algorithms into the problem of analog circuits design is presented. In a single design stage, circuits are produced that satisfy specific frequency response specifications using circuit structures that are unrestricted and with component values that are chosen from a set of preferred values. The extra degrees of freedom resulting from unbounded circuit structures create a huge search space. It is shown in this paper that Genetic Algorithms can be successfully used to search this space. The application chosen is a LC all pass ladder filter circuit design.Key Words: Computer-Aided Design, Analog Circuits, Artificial Intelligence.


3D Printing ◽  
2017 ◽  
pp. 154-171 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi

Laser additive manufacturing is an advanced manufacturing process for making prototypes as well as functional parts directly from the three dimensional (3D) Computer-Aided Design (CAD) model of the part and the parts are built up adding materials layer after layer, until the part is competed. Of all the additive manufacturing process, laser additive manufacturing is more favoured because of the advantages that laser offers. Laser is characterized by collimated linear beam that can be accurately controlled. This chapter brings to light, the various laser additive manufacturing technologies such as: - selective laser sintering and melting, stereolithography and laser metal deposition. Each of these laser additive manufacturing technologies are described with their merits and demerits as well as their areas of applications. Properties of some of the parts produced through these processes are also reviewed in this chapter.


Author(s):  
AN Nithyaa ◽  
S Poonguzhali ◽  
N Vigneshwari

Hemiplegia is a type of paralysis that affects one side of the body due to stroke, characterizing severe weakness or rigid movement. Many people of different age groups are affected by this condition which cannot be completely cured but can be minimized through proper physiotherapy. A continuous and repeated exercise has to be given to the hemiplegic subjects to regain their motor function. To serve this purpose, a three-dimensional model of wheelchair contrived with lower limb exoskeleton is designed and motion analysis is done using SolidWorks. This virtual model of the object is created with the assistance of computer-aided design software. Professionals can be able to do the experiment on what-if scenarios with their three-dimensional designs, which helps to validate their devices and identify any snags with design quality. The pattern of behaviour of lower limb exoskeleton is predicted using SimMechanics in MATLAB.


Author(s):  
G S Ray ◽  
B K Sinha ◽  
S Majumdar

The paper presents a procedure of computer aided design of high-speed impellers. The configurations are obtained using programs for the strength under the influence of centrifugal force within given constraints. The method provides a tool for optimizing stresses at an early design stage.


1987 ◽  
Vol 16 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Marilyn Lord

The method of B-splines provides a very powerful way of representing curves and curved surfaces. The definition is ideally suited to applications in Computer Aided Design (CAD) where the designer is required to remodel the surface by reference to interactive graphics. This particular facility can be advantageous in CAD of body support surfaces, such as design of sockets of limb prostheses, shoe insoles, and custom seating. The B-spline surface is defined by a polygon of control points which in general do not lie on the surface, but which form a convex hull enclosing the surface. Each control point can be adjusted to remodel the surface locally. The resultant curves are well behaved. However, in these biomedical applications the original surface prior to modification is usually defined by a limited set of point measurements from the body segment in question. Thus there is a need initially to define a B-spline surface which interpolates this set of data points. In this paper, a computer-iterative method of fitting a B-spline surface to a given set of data points is outlined, and the technique is demonstrated for a curve. Extension to a surface is conceptually straightforward.


Sign in / Sign up

Export Citation Format

Share Document