scholarly journals GEOMETRIC EVALUATION USING CONSTRUCTAL DESIGN OF A COASTAL OVERTOPPING DEVICE WITH DOUBLE RAMP CONSIDERING A REGULAR WAVE AND TIDAL VARIATION

2019 ◽  
Vol 18 (1) ◽  
pp. 64
Author(s):  
J. C. Martins ◽  
M. M. Goulart ◽  
L. A. Isoldi ◽  
E. D. dos Santos ◽  
M. N. Gomes ◽  
...  

Concern for the environment and new ways of electricity generation, have led to studies of renewable energy sources, among these the Wave Energy Converters (WECs) are an option, however there are still many challenges to define how best to realize the conversion of the energy of the waves into electricity. In this work, a numerical study was carried out with the purpose of maximizing the available power (Pd) of a two-ramp overtopping device, considering the area fraction of ramps (ϕ1 and ϕ2) equal to 0.0006 and the ratio between height and length of the ramps (H1/L1 = H2/L2) equal to 0.3. The distance between the ramps (Lg) was varied in three values: 1.0; 1.5 and 2.0 m, besides three values for the free surface of water (h): 9.8; 10.0 and 10.2 m; simulating a tidal effect. The Constructal Design and Exhaustive Search methods were used, respectively, in the geometric evaluation (determination of a search field) and optimization. For the wave generation, the Second Order Stokes Theory was used, with wave period (T) of 7.5 s and wave height (H) 1.0 m. The results showed that there was no accumulation of water in the upper ramp of the device, in addition, with the increase of Lg there was an increase of Pd in h = 10.0 and 10.2 m, and Pd kept practically constant in h = 9, 8 m. And, as expected, with increasing of h, there was an increase in Pd.

2014 ◽  
Vol 348 ◽  
pp. 232-244 ◽  
Author(s):  
Elizaldo Domingues dos Santos ◽  
Bianca Neves Machado ◽  
Marcos Moisés Zanella ◽  
Mateus das Neves Gomes ◽  
Jeferson Avila Souza ◽  
...  

The conversion of wave energy in electrical one has been increasingly studied. One example of wave energy converter (WEC) is the overtopping device. Its main operational principle consists of a ramp which guides the incoming waves into a reservoir raised slightly above the sea level. The accumulated water in the reservoir flows through a low head turbine generating electricity. In this sense, it is performed a numerical study concerned with the geometric optimization of an overtopping WEC for various relative depths:d/λ = 0.3, 0.5 and 0.62, by means of Constructal Design. The main purpose is to evaluate the effect of the relative depth on the design of the ramp geometry (ratio between the ramp height and its length:H1/L1) as well as, investigate the shape which leads to the highest amount of water that insides the reservoir. In the present simulations, the conservation equations of mass, momentum and one equation for the transport of volumetric fraction are solved with the finite volume method (FVM). To tackle with water-air mixture, the multiphase model Volume of Fluid (VOF) is used. Results showed that the optimal shape, (H1/L1)o, has a strong dependence of the relative depth, i.e., there is no universal shape that leads to the best performance of an overtopping device for several wave conditions.


2019 ◽  
Vol 396 ◽  
pp. 22-31
Author(s):  
Yuri T.B. Lima ◽  
Mateus das Neves Gomes ◽  
Camila F. Cardozo ◽  
Liércio André Isoldi ◽  
Elizaldo D. Santos ◽  
...  

This paper presents a biphasic two-dimensional numerical study of sea wave energy converters with operating principle being Oscillating Water Column (CAO) devices with two couples chambers. For the study of the geometric optimization, the Constructal Design method is applied in association with the exhaustive search method to determine the geometric arrangement that leads to the greatest hydropneumatic power available. The objective function is the maximization of hydropneumatic power converted by the device. The constraints of the problem are the inflow volumes of the hydropneumatic chamber (VE1, VE2), the total volumes (VT1, VT2) and the thicknesses of the device columns (e1, e3). The degrees of freedom analyzed were H1/L1(ratio between height and length of the hydropneumatic chamber of the first device), H2/L2 (ratio between height and length of the hydropneumatic chamber of the second device), H2 (height of the column dividing the two devices) and e2 (thickness of the column dividing the devices). In the present work the degree of freedom H6 (depth of immersion of the device) is kept constant and equal to H6 = 9.86 m. The Finite Volume Method (FVM) was used in the numerical solution of the equations employed. For the treatment of the interaction between the air and water phases, the Volume of Fluid (VOF) method was applied. The results show that the maximum hydropneumatic power available was 5715.2 W obtained for degrees of freedom H1/L1 = H2/L2 = 0.2613 and e2 = 2.22 m. The case of lower performance has a power value equal to 4818.5 W with degrees of freedom equal to H1/L1 = H2/L2 = 0.2613 and e2 = 0.1 m.


Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


1991 ◽  
Vol 56 (12) ◽  
pp. 2791-2799 ◽  
Author(s):  
Juan A. Squella ◽  
Luis J. Nuñez-Vergara ◽  
Hernan Rodríguez ◽  
Amelia Márquez ◽  
Jose M. Rodríguez-Mellado ◽  
...  

Five N-p-phenyl substituted benzamidines were studied by DC and DP polarography in a wide pH range. Coulometric results show that the overall processes are four-electron reductions. Logarithmic analysis of the waves indicate that the process are irreversible. The influence of the pH on the polarographic parameters was also studied. A UV spectrophotometric study was performed in the pH range 2-13. In basic media some variations in the absorption bands were observed due to the dissociation of the amidine group. A determination of the pK values was made by deconvolution of the spectra. Correlations of both the electrochemical parameters and spectrophotometric pK values with the Hammett substituent constants were obtained.


Author(s):  
Christian Böhmeke ◽  
Thomas Koch

AbstractThis paper describes the CO2 emissions of the additional electricity generation needed in Germany for battery electric vehicles. Different scenarios drawn up by the transmission system operators in past and for future years for expansion of the energy sources of electricity generation in Germany are considered. From these expansion scenarios, hourly resolved real-time simulations of the different years are created. Based on the calculations, it can be shown that even in 2035, the carbon footprint of a battery electric vehicle at a consumption of 22.5 kWh/100 km including losses and provision will be around 100 g CO2/km. Furthermore, it is shown why the often-mentioned German energy mix is not suitable for calculating the emissions of a battery electric vehicle fleet. Since the carbon footprint of a BEV improves significantly over the years due to the progressive expansion of renewable-energy sources, a comparison is drawn at the end of this work between a BEV (29.8 tons of CO2), a conventional diesel vehicle (34.4 tons of CO2), and a diesel vehicle with R33 fuel (25.8 tons of CO2) over the entire useful life.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 903 ◽  
Author(s):  
Ivan Trifonov ◽  
Dmitry Trukhan ◽  
Yury Koshlich ◽  
Valeriy Prasolov ◽  
Beata Ślusarczyk

In this study we aimed to determine the extent to which changes in the share of renewable energy sources, their structural complex, and the level of energy security in Eastern Europe, Caucasus and Central Asia (EECCA) countries in the medium- and long-term are interconnected. The study was performed through modeling and determination of the structural characteristics of energy security in the countries. The methodology of the approach to modeling was based on solving the problem of nonlinear optimization by selecting a certain scenario. For the study, the data of EECCA countries were used. The ability of EECCA countries to benefit from long-term indirect and induced advantages of the transformation period depends on the extent to which their domestic supply chains facilitate the deployment of energy transformation and induced economic activity. This study provides an opportunity to assess the degree of influence of renewable energy sources on the level of energy security of countries in the context of energy resource diversification. The high degree of influence of renewable energy sources on energy security in the EECCA countries has been proven in the implementation of the developed scenarios for its increase. Energy security is growing. At the same time, its level depends not only on an increase in the share of renewable sources but also on the structure of energy resources complex of countries, and the development of various renewable energy sources. Therefore, today the EECCA countries are forced not only to increase the share of renewable energy sources but also to attach strategic importance to the structural content of their energy complex.


2021 ◽  
Vol 13 (3) ◽  
pp. 1569
Author(s):  
Namki Choi ◽  
Byongjun Lee ◽  
Dohyuk Kim ◽  
Suchul Nam

System strength is an important concept in the integration of renewable energy sources (RESs). However, evaluating system strength is becoming more ambiguous due to the interaction of RESs. This paper proposes a novel scheme to define the actual interaction boundaries of RESs using the power flow tracing strategy. Based on the proposed method, the interaction boundaries of RESs were identified at the southwest side of Korea Electric Power Corporation (KEPCO) systems. The test results show that the proposed approach always provides the identical interaction boundaries of RESs in KEPCO systems, compared to the Electric Reliability Council of Texas (ERCOT) method. The consistent boundaries could be a guideline for power-system planners to assess more accurate system strength, considering the actual interactions of the RESs.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


1939 ◽  
Vol 29 (3) ◽  
pp. 427-462 ◽  
Author(s):  
Perry Byerly

Summary Least-squares adjustments of observations of waves of the P groups at central and southern California stations are used to obtain the speeds of various waves. Only observations made to tenths of a second are used. It is assumed that the waves have a common velocity for all earthquakes. But the time intercepts of the travel-time curves are allowed to be different for different shocks. The speed of P̄ is found to be 5.61 km/sec.±0.05. The speed for S̄ (founded on fewer data) is 3.26 km/sec. ± 0.09. There are slight differences in the epicenters located by the use of P̄ and S̄ which may or may not be significant. It is suggested that P̄ and S̄ may be released from different foci. The speed of Pn, the wave in the top of the mantle, is 8.02 km/sec. ± 0.05. Intermediate P waves of speeds 6.72 km/sec. ± 0.02 and 7.24 km/sec. ± 0.04 are observed. Only the former has a time intercept which allows a consistent computation of structure when considered a layer wave. For the Berkeley earthquake of March 8, 1937, the accurate determination of depth of focus was possible. This enabled a determination of layering of the earth's crust. The result was about 9 km. of granite over 23 km. of a medium of speed 6.72 km/sec. Underneath these two layers is the mantle of speed 8.02 km/sec. The data from other shocks centering south of Berkeley would not fit this structure, but an assumption of the thickening of the granite southerly brought all into agreement. The earthquakes discussed show a lag of Pn as it passes under the Sierra Nevada. This has been observed before. A reconsideration of the Pn data of the Nevada earthquake of December 20, 1932, together with the data mentioned above, leads to the conclusion that the root of the mountain mass projects into the mantle beneath the surface layers by an amount between 6 and 41 km.


Sign in / Sign up

Export Citation Format

Share Document