scholarly journals IMPACT OF WEATHER CONDITIONS ON THE ENERGETIC QUALITY OF ACICULATED DRY BRANCHES OF Araucaria angustifolia (Bertol.) Kuntze PRODUCED THROUGHOUT A YEAR

FLORESTA ◽  
2021 ◽  
Vol 51 (3) ◽  
pp. 785
Author(s):  
Taíse Mariano Rodrigues ◽  
Tássio Dresch Rech ◽  
Cassiano Eduardo Pinto ◽  
Tiago Celso Baldissera ◽  
Fabio Cervo Garagorry ◽  
...  

The aciculated dry branches of Araucaria angustifolia, which fall throughout the year by the natural pruning of the species, can be a renewable and sustainable alternative for energy generation and income for rural producers inserted in the Mixed Ombrophilous Forest. This research aimed to energetically characterize these dry branches produced by free-growing trees throughout the year in the Santa Catarina's Plateau Region. Also, it aimed to determine the influence of weather conditions on the energetic quality of the aciculated dry branches. To that end, we demarcated 37 trees by choosing a quadrant according to the radius of the crowns in which the dry branches were collected. Collections happened monthly between June 2018 and May 2019. Subsequently, the biomass's physical, chemical, and energetic properties were determined. A simple correlation between climatic variables and properties was obtained. The main advantage of aciculated dry branches as an energy resource was their low moisture content (18%) and the disadvantages were the high ash content and the low basic density (220 kg.m-3). Except for the moisture content, all the properties of the aciculated dry branches varied throughout the year, and they were influenced by the weather variables. The correlations between the climatic variables and the properties analyzed indicated that the energetic quality of the dry branches was better in the months with the highest values of average temperatures and solar radiation.

2019 ◽  
Vol 20 (8) ◽  
Author(s):  
Nurul Chaerani ◽  
DEDE J SUDRAJAT ◽  
ISKANDAR Z SIREGAR ◽  
ULFAH J SIREGAR

Abstract. Chaerani N, Sudrajat DJ, Siregar IZ, Siregar UJ. 2019. Growth performance and wood quality of white jabon (Neolamarckia cadamba) progeny testing at Parung Panjang, Bogor, Indonesia. Biodiversitas 20: 2295-2301. The aim of this study was to evaluate the genetic parameters of growth and wood quality in white jabon progeny test at 54 months old in Parung Panjang, Bogor. The 105 half-sib families obtained from 12 provenances were evaluated in a randomized complete block design with five replications. Wood quality was assessed both in a non-destructive way using a pilodyn and by destructive method using wood sample taker. Results indicated that the mean value ranged from 5.10 to 10.15 m for height, 6.67 to 15.30 cm for diameter, 2.30 to 3.62 cm for pilodyn penetration, 0.66 to 0.82 g/cm3 for wood density, 0.33 to 0.50 for specific gravity, and 66 to 111 % for moisture content, respectively. There were significant differences among 105 families for all traits except moisture content. The high heritability estimate was found for height (0.4-0.69) and basic density (0.27-0.59). Applying 80% selection intensity on diameter and leaving 84 best families in each block will produce a high total genetic gain. Pilodyn penetration had negative correlation with diameter, wood density, and specific gravity.


2016 ◽  
Vol 46 (11) ◽  
pp. 1969-1972
Author(s):  
Rômulo Trevisan ◽  
Alexandre Zanella ◽  
Fernanda Marques da Silva ◽  
Magda Rosa ◽  
Tamires Fioresi ◽  
...  

ABSTRACT: The study of the wood characteristics is of fundamental importance for the correct use of this raw material and, among its properties, the basic density is a major, being reference in the quality of this material. This study aimed to evaluate the axial variation of basic density of the wood of Araucaria angustifolia (Bertoloni) O. Kuntze in different diameter classes. For this, three trees were selected in six diameter classes, called class 1 (20-30cm), class 2 (30.1-40cm), class 3 (40.1-50cm), class 4 (50.1-60cm), class 5 (60.1-70cm) and class 6 (70.1-80cm). From each individual sampled was withdrawn a disc at 0.1m (base), 25, 50, 75 and 100% of the height of the first live branch and in the diameter at 1.30m from the ground (DBH), which were used for determining basic density. The weighted average basic density was equal to 0.422g cm-3 and, regardless of the diameter class analyzed, this property decreased in the axial direction. Diameter induced variation of basic density, but has not been verified a positive or negative systematic tendency in relation to the sampled interval.


Management ◽  
2022 ◽  
Vol 34 (2) ◽  
pp. 26-34
Author(s):  
Olena Nifatova

BACKGROUND AND OBJECTIVES. Modern university buildings use a large number of resources, such as heat, cold and hot water, as well as electricity, which is the main consumed energy resource and is used for lighting, office equipment, ventilation and air conditioning systems. In order to improve the energy efficiency of university buildings, it is necessary to carry out heat and energy modernization of internal and external envelopes, which will allow for internal billing and qualitative analysis of consumption, which contribute to prompt decision-making on heat and energy modernization of the premises.METHODS. To assess the potential for improving the energy efficiency of buildings by improving the quality of protective structures, methods for assessing the temperature and humidity conditions of multilayered enclosing structures in a wide range of humidity under stationary boundary conditions were developed on the basis of the University Hub of Knowledge.FINDINGS. On the basis of the University Hub of Knowledge, Kyiv National University of Technologies and Design, the moisture content profile was calculated for the general estimation of the moisture condition for building No. 4, the planes of the highest moisture content were determined to find the most dangerous, from the moisture condition point of view, section of the structure, the calculation of the enclosing structure modernization according to the maximum allowable moisture condition for the analysis of moisture accumulation in the coldest month of the year was made.CONCLUSION. The advantage of the proposed method of increasing the energy efficiency of buildings by improving the quality of protective structures based on the University Hub of Knowledge is the possibility of calculation in a wide range of moisture content of materials, including supersorption moisture zone, as well as applicability to structures with multizone condensation of moisture. The clarity and simplicity of the proposed method makes it available for the practical implementation of energy efficiency improvements in all university buildings.


2006 ◽  
Vol 54 (4) ◽  
pp. 425-430
Author(s):  
T. Árendás ◽  
L. C. Marton ◽  
P. Bónis ◽  
Z. Berzsenyi

The effect of varying weather conditions on the moisture content of the maize grain yield was investigated in Martonvásár, Hungary from late August to late September, and from the 3rd third of September to the 1st third of Novemberbetween 1999 and 2002. In every year a close positive correlation (P=0.1%) could be observed between the moisture content in late September and the rate of drying down in October. Linear regression was used each year to determine the equilibrium moisture content, to which the moisture content of kernels returned if they contained less than this quantity of water in late September and harvesting was delayed. In the experimental years this value ranged from 15.24-19.01%.


1975 ◽  
Author(s):  
Carl R. Goodwin ◽  
Joseph S. Rosenshein ◽  
D.M. Michaelis

Akustika ◽  
2020 ◽  
pp. 45-50
Author(s):  
Alena Rohanová

This paper explores the analysis of sound speeds in the longitudinal direction and their reduction to the reference moisture content w = 12 %. The sound speed cw was determined with Sylvatest Duo device. Moisture content of beech sawmill assortments (round timber: N = 16, logs: N = 2 × 16, structural boards: N = 54) in the range of 12 – 72 % was measured. For the analysis purposes, the sound speed was converted to reference conditions (c12, uref = 12%). A second-degree polynomial (parabola) with a regression equation of the form: c// = 5649 - 27,371 × w + 0.0735 × w2 was used to convert cw to c12, and correction of measured and calculated values was used as well. The sound speeds c12 in sawmill assortments (c12,round, c12,log, c12,board) were evaluated by linear dependences. Dependence was not confirmed for c12,round and c12,board1 (r = 0.168), in contrast for c12,round and c12,log2 the dependence is statistically very significant (r = 0.634). The results of testing showed that the most suitable procedure for predicting quality of structural timber is the first step round timber – log2, the second step: log2 - board2. More exact results of the construction boards were obtained from log2 than from log1. The sound speed is used in the calculation of dynamic modulus of elasticity (Edyn). EN 408 mentions the possibility of using dynamic modulus of elasticity as an alternative method in predicting the quality of structural timber.


2018 ◽  
Vol 44 (12) ◽  
pp. 1747 ◽  
Author(s):  
Lu-Lu LI ◽  
Jun XUE ◽  
Rui-Zhi XIE ◽  
Ke-Ru WANG ◽  
Bo MING ◽  
...  

2021 ◽  
Vol 2 (4) ◽  
pp. 1-20
Author(s):  
Ahmed Boubrima ◽  
Edward W. Knightly

In this article, we first investigate the quality of aerial air pollution measurements and characterize the main error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution monitoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while taking into account the quality of aerial measurements. We evaluate our mission planning approach based on a Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained even when pollution dynamics are high.


2021 ◽  
Vol 13 (1) ◽  
pp. 427
Author(s):  
Magdalena Rykała ◽  
Łukasz Rykała

The article describes the issues of transport of bulk materials. The knowledge of this process has a key impact on the rational planning of transport tasks. It is necessary to have knowledge about the transport services market and the competition that exists in it. In order to achieve a competitive advantage on the market, enterprises should analyze data on the implementation of transport tasks on an ongoing basis. It is also important that the costs incurred from the conducted activity are minimized, while increasing the quality of services and taking into account the sustainable development of the enterprise. The study analyzes data from a few selected motor vehicles in the period of 3 years of operation, coming from an enterprise specializing in the transport of bulk materials. Moreover, a global sensitivity analysis was performed based on a neural model describing the impact of the analyzed factors on the company’s profit. The results show that the most important factors influencing the company’s profit are the fuel consumption of individual vehicles, the driver (driving style) and the month (average temperature, weather conditions).


Sign in / Sign up

Export Citation Format

Share Document