scholarly journals Exploration Implications of Multiple Formation Environments of Advanced Argillic Minerals

2021 ◽  
Author(s):  
Jeffrey W. Hedenquist ◽  
Antonio Arribas

Abstract Advanced argillic minerals, as defined, include alunite and anhydrite, aluminosilicates (kaolinite, halloysite, dickite, pyrophyllite, andalusite, zunyite, and topaz), and diaspore. One or more of these minerals form in five distinctly different geologic environments of hydrolytic alteration, with pH 4–5 to <1, most at depths <500 m. (1) Where an intrusion-related hydrothermal system, typical of that associated with porphyry Cu ± Au deposits, evolves to white-mica stability, continued ascent and cooling of the white-mica–stable liquid results in pyrophyllite (± diaspore) becoming stable near the base of the lithocap. (2) A well-understood hypogene environment of formation is vapor condensation near volcanic vents, where magmatic SO2 and HCl condense into local groundwater to produce H2SO4 and HCl-rich solutions with a pH of 1–1.5. Close to isochemical dissolution of the host rock occurs because of the high solubility of Al and Fe hydroxides at pH <2, except for the SiO2 component, which remains as a siliceous residue because of the relatively low solubility of SiO2. This residual quartz, commonly with a vuggy texture, is largely barren of metals because of the low metal content in high-temperature but low-pressure volcanic vapor. Rock dissolution causes the pH of the acidic solution to increase, such that alunite and kaolinite (or dickite or pyrophyllite at higher temperatures) become stable, forming a halo to the residual quartz. This initially barren residual quartz, which forms a lithocap horizon where permeable lithologic units are intersected by the feeder structure, may become mineralized if a subsequent white-mica–stable liquid ascends to this level and precipitates copper and gold. (3) Boiling of a hydrothermal liquid generates vapor with CO2 and H2S. Where the vapor condenses above the water table, atmospheric O2 in the vadose (unsaturated) zone causes oxidation of H2S to sulfuric acid, forming a steam-heated acid-sulfate solution with pH of 2–3. In this environment, kaolinite and alunite form in horizons above the water table at <100°C. Silica derived within the vadose zone will precipitate as amorphous silica at the water table, as the condensate follows the hydraulic gradient, causing opal replacement above and at the aquifer. (4) By contrast, where condensation of this vapor occurs below the water table, the CO2 in solution forms carbonic acid (H2CO3), leading to a pH of 4–5. This marginal carapace of condensate, with temperatures up to 150°–170°C, commonly acts as a diluent of the ascending parental NaCl liquid. This steam-heated liquid forms intermediate argillic alteration of clays, kaolinite, and Fe-Mn carbonates; this kaolinite, which can be present at depths of several hundreds of meters, can potentially be mistaken as having been caused by a steam-heated acid-sulfate or supergene overprint. (5) The final setting is supergene, caused by posthydrothermal weathering and oxidation of mainly pyrite, locally creating pH <1 liquid because of high concentrations of H2SO4 within the vadose zone and forming kaolinite, alunite, and Fe oxyhydroxides. This genetic framework of formation environments of advanced (and intermediate) argillic alteration provides the basis to interpret alteration mineralogy, in combination with alteration textures and morphology plus zonation, including the overprint of one alteration style on another. This framework can be used to help focus exploration for and assessment of hydrothermal ore deposits, including epithermal, porphyry, and volcanic-hosted massive sulfide.


1990 ◽  
Vol 212 ◽  
Author(s):  
John W. Cary ◽  
Glendon W. Gee ◽  
Greg A. Whyatt

ABSTRACTOne of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly lower temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill material. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field.Work supported in part by U.S. Department of Energy, OHER, Contract DE-AC06-76RL0 1830



2016 ◽  
Vol 20 (8) ◽  
pp. 3099-3108 ◽  
Author(s):  
Tuvia Turkeltaub ◽  
Daniel Kurtzman ◽  
Ofer Dahan

Abstract. Nitrate is considered the most common non-point pollutant in groundwater. It is often attributed to agricultural management, when excess application of nitrogen fertilizer leaches below the root zone and is eventually transported as nitrate through the unsaturated zone to the water table. A lag time of years to decades between processes occurring in the root zone and their final imprint on groundwater quality prevents proper decision-making on land use and groundwater-resource management. This study implemented the vadose-zone monitoring system (VMS) under a commercial crop field. Data obtained by the VMS for 6 years allowed, for the first time known to us, a unique detailed tracking of water percolation and nitrate migration from the surface through the entire vadose zone to the water table at 18.5 m depth. A nitrate concentration time series, which varied with time and depth, revealed – in real time – a major pulse of nitrate mass propagating down through the vadose zone from the root zone toward the water table. Analysis of stable nitrate isotopes indicated that manure is the prevalent source of nitrate in the deep vadose zone and that nitrogen transformation processes have little effect on nitrate isotopic signature. The total nitrogen mass calculations emphasized the nitrate mass migration towards the water table. Furthermore, the simulated pore-water velocity through analytical solution of the convection–dispersion equation shows that nitrate migration time from land surface to groundwater is relatively rapid, approximately 5.9 years. Ultimately, agricultural land uses, which are constrained to high nitrogen application rates and coarse soil texture, are prone to inducing substantial nitrate leaching.



2021 ◽  
Author(s):  
Ane K. Engvik ◽  
Claudia A. Trepmann ◽  
Håkon Austrheim

<p>The Proterozoic gneisses of the Bamble lithotectonic domain (south Norway) underwent intense scapolitisation caused by K- and Mg-rich fluids and extensive albitisation with formation of numerous ore deposits.</p><p>By detailed studies of mineral reaction fabrics we document release of the chemical active Mg, K and Fe-components forming the metasomatic fluid: Breakdown of biotite to muscovite releases K, Mg, Fe, Si and H<sub>2</sub>O. As reaction products tiny Fe-oxide needles are present in the transforming rock. H<sub>2</sub>O is reacting with K-feldspar to produce additional amounts of white mica and quartz. During a subsequent reaction muscovite is replaced to sillimanite again releasing quartz and a K-rich fluid. The reactions form the peculiar sillimanite-nodular quartzite, but also well-foliated sillimanite-mica gneiss.</p><p>Optical and EBSD microfabric studies reveal a shape preferred orientation for quartz, but despite of a pronounced foliation, quartz does not show a crystallographic preferred orientation. A crystallographic preferred orientation is present for mica and sillimanite. Coarse micas show sutured boundaries to quartz, implying low nucleation rates, no crystallographic or surface-energy control during growth and no obvious crystallographic relationship to quartz.</p><p>Our study illustrates the transformation of a quartzofeldspatic lithology into sillimanite-bearing quartzite. The mineral replacement and deformation show ongoing metamorphic reactions during deformation. The microfabric data indicates reaction at non-isostatic stress condition. The deduced mineral replacement reactions document a source of K-, Mg- and Fe-rich metasomatic fluids necessary to cause the pervasive scapolitisation and Fe-deposition in the area. The mineral reactions and deformation produce rocks with a new mineralogy and structure; an increased understanding of these processes is important for the modelling of crustal building and geological history.</p>



2021 ◽  
Author(s):  
Torsten Noffz ◽  
Jannes Kordilla ◽  
Alireza Kavousi ◽  
Thomas Reimann ◽  
Martin Sauter ◽  
...  

<p>The locally focused dissolution of the rock material (e.g., below dolines and dry valleys) in karst systems and in general percolating clusters of fractures in consolidated aquifer systems trigger the development of preferential flow paths in the vadose zone. Rainfall events may initiate rapid mass fluxes via macropores and fractures (e.g., as gravitationally-driven films) that lead to source-responsive water table fluctuations and comparably short residence times within the vadose zone. The degree of partitioning into a slow diffuse infiltration component and a rapid localized part depends, amongst others, on the hydraulic interaction of porous matrix and fracture domain as well as the geometrical characteristics of the fracture systems (e.g., persistence, connectivity) that are often difficult to obtain or unknown under most field conditions. Given their importance in water-resource management, specifically in arid and semi-arid regions (e.g., Mediterranean), it is desirable to recover such infiltration dynamics in porous-fractured systems with physically-based yet not overparameterized models. Here, we simulate water table fluctuations in a karst catchment in southwest Germany (Gallusquelle) using a source-responsive film flow model based on borehole and precipitation data. The model takes into account interfacial connectivity between slow and fast domain as well as phreatic zone discharge via classical recession analysis. This case study shows the potential importance of preferential flows while modeling water table responses in karst systems and recognizes the need for formulations other than those applied for a diffuse bulk fractured domain where infiltration patterns are assumed to be homogeneous without formation of infiltration instabilities along preferential pathways.</p>



2020 ◽  
pp. 467-495
Author(s):  
T. Baker ◽  
S. Mckinley ◽  
S. Juras ◽  
Y. Oztas ◽  
J. Hunt ◽  
...  

Abstract The Miocene Kışladağ deposit (~17 Moz), located in western Anatolia, Turkey, is one of the few global examples of Au-only porphyry deposits. It occurs within the West Tethyan magmatic belt that can be divided into Cretaceous, Cu-dominant, subduction-related magmatic arc systems and the more widespread Au-rich Cenozoic magmatic belts. In western Anatolia, Miocene magmatism was postcollisional and was focused in extension-related volcanosedimentary basins that formed in response to slab roll back and a major north-south slab tear. Kışladağ formed within multiple monzonite porphyry stocks and dikes at the contact between Menderes massif metamorphic basement and volcanic rocks of the Beydağı stratovolcano in the Uşak-Güre basin. The mineralized magmatic-hydrothermal system formed rapidly (<400 kyr) between ~14.75 and 14.36 Ma in a shallow (<1 km) volcanic environment. Volcanism continued to at least 14.26 ± 0.09 Ma based on new age data from a latite lava flow at nearby Emiril Tepe. Intrusions 1 and 2 were the earliest (14.73 ± 0.05 and 14.76 ± 0.01 Ma, respectively) and best mineralized phases (average median grades of 0.64 and 0.51 g/t Au, respectively), whereas younger intrusions host progressively less Au (Intrusion 2A: 14.60 ± 0.06 Ma and 0.41 g/t Au; Intrusion 2 NW: 14.45 ± 0.08 Ma and 0.41 g/t Au; Intrusion 3: 14.39 ± 0.06 and 14.36 ± 0.13 Ma and 0.19 g/t Au). A new molybdenite age of 14.60 ± 0.07 Ma is within uncertainty of the previously published molybdenite age (14.49 ± 0.06 Ma), and supports field observations that the bulk of the mineralization formed prior to the emplacement of Intrusion 3. Intrusions 1 and 2 are altered to potassic (biotite-K-feldspar-quartz ± magnetite) and younger but deeper sodic-calcic (feldspar-amphibole-magnetite ± quartz ± carbonate) assemblages, both typically pervasive with disseminated to veinlet-hosted pyrite ± chalcopyrite ± molybdenite and localized quartz-feldspar stockwork veinlets and sodic-calcic breccias. Tourmaline-white mica-quartz-pyrite alteration surrounds the potassic core both within the intrusions and outboard in the volcanic rocks. Tourmaline was most strongly developed on the inner margins of the tourmaline-white mica zone, particularly along the Intrusion 1 volcanic contact where it formed breccias and veins, including Maricunga-style veinlets. Field relationships show that the early magmatic-hydrothermal events were cut by Intrusion 2A, which was then overprinted by Au-bearing argillic (kaolinite-pyrite ± quartz) alteration, followed by Intrusion 3 and late-stage, low-grade to barren argillic and advanced argillic alteration (quartz-pyrite ± alunite ± dickite ± pyrophyllite). Gold deportment changes with each successive hydrothermal event. The early potassic and sodic-calcic alteration controls much of the original Au distribution, with the Au dominantly deposited with feldspar and lesser quartz and pyrite. Tourmaline-white mica and argillic alteration events overprinted and altered the early Au-bearing feldspathic alteration and introduced additional Au that was dominantly associated with pyrite. Analogous Au-only deposits such as Maricunga, Chile, La Colosa, Colombia, and Biely Vrch, Slovakia, are characterized by similar alteration styles and Au deportment. The deportment of Au in these Au-only porphyry deposits differs markedly from that in Au-rich porphyry Cu deposits where Au is typically associated with Cu sulfides.



Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 629
Author(s):  
Olga Yakubovich ◽  
Mary Podolskaya ◽  
Ilya Vikentyev ◽  
Elena Fokina ◽  
Alexander Kotov

We report on the application of the U-Th-He method for the direct dating of pyrite and provide an original methodological approach for measurement of U, Th and He in single grains without loss of parent nuclides during thermal extraction of He. The U-Th-He age of ten samples of high-crystalline stoichiometric pyrite from unoxidized massive ores of the Uzelga volcanogenic massive sulfide (VMS) deposit, South Urals, is 382 ± 12 Ma (2σ) (U concentrations ~1–5 ppm; 4He ~10−4 cm3 STP g−1). This age is consistent with independent (biostratigraphic) estimations of the age of ore formation (ca, 389–380 Ma) and is remarkably older than the probable age of the regional prehnite-pumpellyite facies metamorphism (~340–345 Ma). Our results indicate that the U-Th-He dating of ~1 mg weight pyrite sample is possible and open new perspectives for the dating of ore deposits. The relative simplicity of U-Th-He dating in comparison with other geochronological methods makes this approach interesting for further application.



1936 ◽  
Vol 69 (1) ◽  
pp. 585 ◽  
Author(s):  
C. B. F. Young ◽  
N. A. Gould


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC81-WC93 ◽  
Author(s):  
Michal Malinowski ◽  
Ernst Schetselaar ◽  
Donald J. White

We applied seismic modeling for a detailed 3D geologic model of the Flin Flon mining camp (Canada) to address some imaging and interpretation issues related to a [Formula: see text] 3D survey acquired in the camp and described in a complementary paper (part 1). A 3D geologic volumetric model of the camp was created based on a compilation of geologic data constraints from drillholes, surface geologic mapping, interpretation of 2D seismic profiles, and 3D surface and grid geostatistical modeling techniques. The 3D modeling methodology was based on a hierarchical approach to account for the heterogeneous spatial distribution of geologic constraints. Elastic parameters were assigned within the model based on core sample measurements and correlation with the different lithologies. The phase-screen algorithm used for seismic modeling was validated against analytic and finite-difference solutions to ensure that it provided accurate amplitude-variation-with-offset behavior for dipping strata. Synthetic data were generated to form zero-offset (stack) volume and also a complete prestack data set using the geometry of the real 3D survey. We found that the ability to detect a clear signature of the volcanogenic massive sulfide with ore deposits is dependent on the mineralization type (pyrite versus pyrrhotite rich ore), especially when ore-host rock interaction is considered. In the presence of an increasing fraction of the host rhyolite rock within the model volume, the response from the lower impedance pyrrhotite ore is masked by that of the rhyolite. Migration tests showed that poststack migration effectively enhances noisy 3D DMO data and provides comparable results to more computationally expensive prestack time migration. Amplitude anomalies identified in the original 3D data, which were not predicted by our modeling, could represent potential exploration targets in an undeveloped part of the camp, assuming that our a priori earth model is sufficiently accurate.



Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 449
Author(s):  
Kirill S. Ivanov ◽  
Valery V. Maslennikov ◽  
Dmitry A. Artemyev ◽  
Aleksandr S. Tseluiko

In the Bazhenov Formation, framboidal clusters and nodular pyrite formed in the dysoxic–anoxic interface within organic-rich sediments. Some nodule-like pyritized bituminous layers and pyrite nodules are similar to pyritized microbial mat fragments by the typical fine laminated structure. Framboidal pyrite of the Bazhenov Formation is enriched in redox-sensitive elements such as Mo, V, Au, Cu, Pb, Ag, Ni, Se, and Zn in comparison with the host shales and nodular pyrite. Nodular pyrite has higher concentrations of As and Sb, only. Strong positive correlations that can be interpreted as nano-inclusions of organic matter (Mo, V, Au), sphalerite (Zn, Cd, Hg, Sn, In, Ga, Ge), galena (Pb, Bi, Sb, Te, Ag, Tl), chalcopyrite (Cu, Se) and tennantite (Cu, As, Sb, Bi, Te, Ag, Tl) and/or the substitution of Co, Ni, As and Sb into the pyrite. On the global scale, pyrite of the Bazhenov Formation is very similar to pyrite from highly metalliferous bituminous black shales, associated, as a rule, with gas and oil-and-gas deposits. Enrichment with Mo and lower Co and heavy metals indicate a higher influence of seawater during formation of pyrite from the Bazhenov Formation in comparison to different styles of ore deposits. Transitional elements such as Zn and Cu in pyrite of the Bazhenov Formation has resulted from either a unique combination of the erosion of Cu–Zn massive sulfide deposits of the Ural Mountains from one side and the simultaneous manifestation of organic-rich gas seep activity in the West Siberian Sea from another direction.



Sign in / Sign up

Export Citation Format

Share Document